Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:04:12.772Z Has data issue: false hasContentIssue false

Ion Beam Induced Artifacts in Lead-Based Chalcogenides

Published online by Cambridge University Press:  14 May 2019

Xiaomi Zhang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Shiqiang Hao
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Gangjian Tan
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
Xiaobing Hu
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA NUANCE Center, Northwestern University, Evanston, IL 60208, USA
Eric W. Roth
Affiliation:
NUANCE Center, Northwestern University, Evanston, IL 60208, USA
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
Chris Wolverton
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Vinayak P. Dravid*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA NUANCE Center, Northwestern University, Evanston, IL 60208, USA
*
*Author for correspondence: Vinayak P. Dravid, E-mail: v-dravid@northwestern.edu
Get access

Abstract

Metal chalcogenides have attracted great attention because of their broad applications. It has been well acknowledged that microstructure can alter the intrinsic properties and performance of metal chalcogenides. The structure–property–performance relationships can be investigated at atomic scale with scanning transmission and transmission electron microscopy (STEM and TEM). Nevertheless, careful specimen preparation is paramount for accurate analyses and interpretations. In this work, we compare the effects of a variety of well-established TEM specimen preparation methods on the observed microstructure of an ingot stoichiometric lead telluride (PbTe). Most importantly, from aberration corrected STEM and first principles calculations, we discovered that argon (Ar) ion milling can lead to surface irradiation damage in the form of Pb vacancy clusters and self-interstitial atom (SIA) clusters. The SIA clusters appear as orthogonal nanoscale features when characterized along the <001> crystal orientation of the rock salt structured PbTe. This obfuscates the interpretation of the intrinsic microstructure of metal chalcogenides, especially lead chalcogenides. We demonstrate that with sufficiently low energy (300 eV) Ar ion cleaning or appropriate high-temperature annealing, the surface damage layer can be properly cleaned and the orthogonal nanoscale features are significantly reduced. This reveals the materials’ intrinsic structure and can be used as the standard protocol for future TEM specimen preparation of lead-based chalcogenide materials.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aabdin, Z, Peranio, N & Eibl, O (2012). Switching of the natural nanostructure in Bi2Te3 materials by ion irradiation. Adv Mater 24(34), 46054608.Google Scholar
Averback, R (1982). Ion-irradiation studies of cascade damage in metals. J Nucl Mater 108, 3345.Google Scholar
Averback, R (1986). Fundamental aspects of ion beam mixing. Nucl Instrum Methods Phys Res Sect B 15(1–6), 675687.Google Scholar
Ayache, J, Beaunier, L, Boumendil, J, Ehret, G & Laub, D (2010). Sample Preparation Handbook for Transmission Electron Microscopy: Techniques. New York: Springer.Google Scholar
Barna, A, Pécz, B & Menyhard, M (1999). TEM sample preparation by ion milling/amorphization. Micron 30(3), 267276.Google Scholar
Carter, CB & Williams, DB (2009). Transmission Electron Microscopy. USA: Springer-Verlag.Google Scholar
Fischione, PE, Williams, RE, Genç, A, Fraser, HL, Dunin-Borkowski, RE, Luysberg, M, Bonifacio, CS & Kovács, A (2017). A small spot, inert gas, ion milling process as a complementary technique to focused ion beam specimen preparation. Microsc Microanal 23(4), 782793.Google Scholar
Giannuzzi, L (2006). Reducing FIB damage using low energy ions. Microsc Microanal 12(S02), 12601261.Google Scholar
Girard, SN, He, J, Zhou, X, Shoemaker, D, Jaworski, CM, Uher, C, Dravid, VP, Heremans, JP & Kanatzidis, MG (2011). High performance Na-doped PbTe–PbS thermoelectric materials: Electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc 133(41), 1658816597.Google Scholar
Grätzel, M (2009). Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11), 17881798.Google Scholar
Gresslehner, K & Palmetshofer, L (1980). Ion-implantation-induced damage and resonant levels in Pb1−xSnxTe. J Appl Phys 51(9), 47354738.Google Scholar
Hasan, MZ & Kane, CL (2010). Colloquium: Topological insulators. Rev Mod Phys 82(4), 3045.Google Scholar
He, J, Zhao, LD, Zheng, JC, Doak, JW, Wu, H, Wang, HQ, Lee, Y, Wolverton, C, Kanatzidis, MG & Dravid, VP (2013). Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc 135(12), 46244627.Google Scholar
Homer, M & Medlin, DL (2012). Preparation methods for TEM specimens of bismuth telluride and related thermoelectric alloys. Microsc Microanal 18(S2), 14821483.Google Scholar
Jin, HH, Shin, C & Kwon, J (2010). Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling. J Electron Microsc (Tokyo) 59(6), 463468.Google Scholar
John, J & Zogg, H (1999). Infrared pn-junction diodes in epitaxial narrow gap PbTe layers on Si substrates. J Appl Phys 85(6), 33643367.Google Scholar
Kim, SI, Lee, KH, Mun, HA, Kim, HS, Hwang, SW, Roh, JW, Yang, DJ, Shin, WH, Li, XS & Lee, YH (2015). Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230), 109114.Google Scholar
Kisielowski, C, Freitag, B, Bischoff, M, Van Lin, H, Lazar, S, Knippels, G, Tiemeijer, P, van der Stam, M, von Harrach, S & Stekelenburg, M (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14(5), 469477.Google Scholar
Kresse, G & Furthmüller, J (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16), 11169.Google Scholar
Krusin-Elbaum, L, Cabral, C Jr., Chen, K, Copel, M, Abraham, D, Reuter, K, Rossnagel, S, Bruley, J & Deline, V (2007). Evidence for segregation of Te in Ge 2 Sb 2 Te 5 films: Effect on the “phase-change” stress. Appl Phys Lett 90(14), 141902.Google Scholar
Lee, Y, Lo, S-H, Androulakis, J, Wu, C-I, Zhao, L-D, Chung, D-Y, Hogan, TP, Dravid, VP & Kanatzidis, MG (2013). High-performance tellurium-free thermoelectrics: All-scale hierarchical structuring of p-type PbSe–MSe systems (M=Ca, Sr, Ba). J Am Chem Soc 135(13), 51525160.Google Scholar
Lee, Y, Lo, SH, Chen, C, Sun, H, Chung, DY, Chasapis, TC, Uher, C, Dravid, VP & Kanatzidis, MG (2014). Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nat Commun 5, 3640.Google Scholar
Lensch-Falk, JL, Sugar, JD, Hekmaty, MA & Medlin, DL (2010). Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J Alloys Compd 504(1), 3744.Google Scholar
Li, C, Wu, Y, Poplawsky, J, Pennycook, TJ, Paudel, N, Yin, W, Haigh, SJ, Oxley, MP, Lupini, AR & Al-Jassim, M (2014). Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys Rev Lett 112(15), 156103.Google Scholar
Lifshitz, IM & Slyozov, VV (1961). The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1), 3550.Google Scholar
Lin, J, Hsleh, K, Sharma, R & Chang, Y (1989). The Pb-Te (lead-tellurium) system. Bull Alloy Phase Diagr 10(4), 340347.Google Scholar
Liu, Y, Li, Y, Rajput, S, Gilks, D, Lari, L, Galindo, P, Weinert, M, Lazarov, V & Li, L (2014). Tuning Dirac states by strain in the topological insulator Bi 2 Se 3. Nat Phys 10(4), 294.Google Scholar
Lu, X, Zhao, L, He, X, Xiao, R, Gu, L, Hu, YS, Li, H, Wang, Z, Duan, X & Chen, L (2012). Lithium storage in Li4Ti5O12 spinel: The full static picture from electron microscopy. Adv Mater 24(24), 32333238.Google Scholar
Luo, Z-Z, Hao, S, Zhang, X, Hua, X, Cai, S, Tan, G, Bailey, TP, Ma, R, Uher, C & Wolverton, C (2018a). Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe. Energy Environ Sci 11, 32203230.Google Scholar
Luo, ZZ, Zhang, X, Hua, X, Tan, G, Bailey, TP, Xu, J, Uher, C, Wolverton, C, Dravid, VP & Yan, Q (2018b). High thermoelectric performance in supersaturated solid solutions and nanostructured n-type PbTe–GeTe. Adv Funct Mater 28(31), 1801617.Google Scholar
Mitome, M (2012). Ultrathin specimen preparation by a low-energy Ar-ion milling method. Microscopy 62(2), 321326.Google Scholar
Mizuguchi, Y & Takano, Y (2010). Review of Fe chalcogenides as the simplest Fe-based superconductor. J Phys Soc Jpn 79(10), 102001.Google Scholar
Norr, MK (1963). Polishes and Etches for tin Telluride, Lead Sulfide, Lead Selenide, and Lead Telluride. White Oak, MD: Naval Ordnance Lab.Google Scholar
Page, RH, Schaffers, KI, DeLoach, LD, Wilke, GD, Patel, FD, Tassano, JB, Payne, SA, Krupke, WF, Chen, K & Burger, A (1997). Cr/sup 2+/−doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers. IEEE J Quantum Electron 33(4), 609619.Google Scholar
Palmetshofer, L (1984). Ion implantation in IV–VI semiconductors. Appl Phys A 34(3), 139153.Google Scholar
Palmetshofer, L, Heinrich, H, Benka, O & Rescheneder, W (1977). Ion-implantation-induced lattice defects in PbTe. Appl Phys Lett 30(11), 557559.Google Scholar
Pei, Y, Zheng, L, Li, W, Lin, S, Chen, Z, Wang, Y, Xu, X, Yu, H, Chen, Y & Ge, B (2016). Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv Electron Mater 2(6), 1600019.Google Scholar
Pelaz, L, Marqués, LA & Barbolla, J (2004). Ion-beam-induced amorphization and recrystallization in silicon. J Appl Phys 96(11), 59475976.Google Scholar
Pennycook, SJ, Varela, M, Hetherington, CJ & Kirkland, AI (2006). Materials advances through aberration-corrected electron microscopy. MRS Bull 31(1), 3643.Google Scholar
Preier, H (1979). Recent advances in lead-chalcogenide diode lasers. Appl Phys 20(3), 189206.Google Scholar
Sarkar, S, Zhang, X, Hao, S, Hua, X, Bailey, TP, Uher, C, Wolverton, C, Dravid, VP & Kanatzidis, MG (2018). A dual alloying strategy to achieve high thermoelectric figure of merit and lattice hardening in p-type nanostructured PbTe. ACS Energy Lett 3(10), 25932601.Google Scholar
Tan, G, Zhao, LD & Kanatzidis, MG (2016). Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116(19), 1212312149.Google Scholar
Tan, Q, Zhao, L-D, Li, J-F, Wu, C-F, Wei, T-R, Xing, Z-B & Kanatzidis, MG (2014). Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS. J Mater Chem A 2(41), 1730217306.Google Scholar
Tsaur, B, Lau, S & Mayer, J (1980). Continuous series of metastable Ag-Cu solid solutions formed by ion-beam mixing. Appl Phys Lett 36(10), 823826.Google Scholar
Wagner, C (1961). Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Berichte der Bunsengesellschaft für physikalische Chemie 65(7–8), 581591.Google Scholar
Was, GS (2016). Fundamentals of Radiation Materials Science: Metals and Alloys. Berlin, Heidelberg: Springer.Google Scholar
Wei, T-R, Tan, G, Zhang, X, Wu, C-F, Li, J-F, Dravid, VP, Snyder, GJ & Kanatzidis, MG (2016). Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J Am Chem Soc 138(28), 88758882.Google Scholar
Wilson, I, Zheng, N, Knipping, U & Tsong, I (1989). Scanning tunneling microscopy of ion impacts on semiconductor surfaces. J Vac Sci Technol A 7(4), 28402844.Google Scholar
Zhao, LD, Lo, SH, Zhang, Y, Sun, H, Tan, G, Uher, C, Wolverton, C, Dravid, VP & Kanatzidis, MG (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373377.Google Scholar
Zhao, Y & Burda, C (2012). Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ Sci 5(2), 55645576.Google Scholar
Supplementary material: File

Zhang et al. supplementary material

Figures S1-S4

Download Zhang et al. supplementary material(File)
File 3.1 MB