Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T01:38:46.964Z Has data issue: false hasContentIssue false

Improvements in the X-Ray Analytical Capabilities of a Scanning Transmission Electron Microscope by Spherical-Aberration Correction

Published online by Cambridge University Press:  11 October 2006

M. Watanabe
Affiliation:
Department of Materials Science and Engineering/Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015, USA
D.W. Ackland
Affiliation:
Department of Materials Science and Engineering/Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015, USA
A. Burrows
Affiliation:
Department of Materials Science and Engineering/Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015, USA
C.J. Kiely
Affiliation:
Department of Materials Science and Engineering/Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015, USA
D.B. Williams
Affiliation:
Department of Materials Science and Engineering/Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015, USA
O.L. Krivanek
Affiliation:
NION Co., Kirkland, WA 98033, USA
N. Dellby
Affiliation:
NION Co., Kirkland, WA 98033, USA
M.F. Murfitt
Affiliation:
NION Co., Kirkland, WA 98033, USA
Z. Szilagyi
Affiliation:
NION Co., Kirkland, WA 98033, USA
Get access

Abstract

A Nion spherical-aberration (Cs) corrector was recently installed on Lehigh University's 300-keV cold field-emission gun (FEG) Vacuum Generators HB 603 dedicated scanning transmission electron microscope (STEM), optimized for X-ray analysis of thin specimens. In this article, the impact of the Cs-corrector on X-ray analysis is theoretically evaluated, in terms of expected improvements in spatial resolution and analytical sensitivity, and the calculations are compared with initial experimental results. Finally, the possibilities of atomic-column X-ray analysis in a Cs-corrected STEM are discussed.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L.J., Josefsson, T.W., & Rossouw, C.J. (1994). Interaction delocalization in characteristic X-ray emission from light elements. Ultramicroscopy 55, 258267.Google Scholar
Batson, P.E. (1995). Conduction bandstructure in strained silicon by spatially resolved electron energy loss spectroscopy. Ultramicroscopy 59, 6370.Google Scholar
Batson, P.E., Dellby, N., & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Bennett, J.C. & Egerton, R.F. (1995). NiO test specimens for analytical electron microscopy: Round-robin results. J Microsc Soc Am 1, 143149.Google Scholar
Brown, L.M. (1981). Scanning transmission electron microscopy: Microanalysis for the microelectronics age. J Phys F Metal Phys 11, 126.Google Scholar
Browning, N.D. & Pennycook, S.J. (1995). Atomic-resolution electron energy-loss spectroscopy in the scanning transmission electron microscopy. J Microsc 180, 230237.Google Scholar
Bullock, J.F., Humphreys, C.J., Mace, A.J.W., Bishop, H.E., & Titchmarsh, J.M. (1985). Crystalline effects in the analysis of semiconductor materials using Auger electrons and X-rays. In Microscopy in Semiconductor Materials 1985, Gullis, A.G. & Holt, D.B. (Eds.), pp. 405410. Bristol: Adam Hilger.
Burke, M.G., Watanabe, M., Williams, D.B., & Hyde, J.M. (2006). Quantitative characterization of nanoprecipitates in irradiated low alloy steels: Advances in the application of FEG-STEM quantitative analysis to real materials. J Mater Sci (in press).Google Scholar
Colliex, C. & Mory, C. (1984). Quantitative aspects of scanning transmission electron microscopy. In Quantitative Electron Microscopy, Chapman, J.N. & Craven, A. (Eds.), p. 149. Glasgow, Scotland: Scottish University Summer School in Physics.
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E., & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscope. J Elec Microsc 50, 177185.Google Scholar
Doig, P. & Flewitt, P.E.J. (1982). The detection of monolayer grain boundary segregation in steels using STEM-EDS X-ray microanalysis. Met Trans A 13, 13971403.Google Scholar
Egerton, R.F. & Cheng, S.C. (1994). Characterization of an analytical electron microscope with a NiO test specimen. Ultramicroscopy 55, 4354.Google Scholar
Fiori, C.E., Swyt, C.R., & Ellis, J.R. (1982). The theoretical characteristic to continuum ratio in energy dispersive analysis in the analytical electron microscope. In Microbeam Analysis—1982, Heinrich, K.F.J. (Ed.), pp. 5771. San Francisco, CA: San Francisco Press.
Goldstein, J.I. & Yakowitz, H. (1975). Practical Scanning Electron Microscopy. New York: Plenum.
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., & Urban, K. (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Haider, M., Uhlemann, S., & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.Google Scholar
Hawkes, P.W. & Kasper, E. (1996). Aberration correction. In Principles of Electron Optics, Vol. 2 Applied Geometrical Optics, pp. 857878. London: Academic Press.
Jia, C.L., Lentzen, M., & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870873.Google Scholar
Jolliffe, I.T. (2002). Principal Component Analysis, 2nd ed. New York: Springer.
Joy, D.C. & Maher, D.M. (1977). Sensitivity limits for thin specimen X-ray analysis. In Scanning Electron Microscopy—1977, Johari, O. (Ed.), vol. 1, pp. 325334. Chicago: IITRI.
Keast, V.J. & Williams, D.B. (1999). Quantitative compositional mapping of Bi segregation to grain boundaries. Acta Mater 47, 39994008.Google Scholar
Krivanek, O.L., Dellby, N., & Lupini, A.R. (1999). Toward sub-Å electron beams. Ultramicroscopy 78, 111.Google Scholar
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F., & Szilagyi, Z. (2003). Toward sub-0.5 Å electron beams. Ultramicroscopy 96, 229237.Google Scholar
Lyman, C.E. (1987). Prospects for analytical electron microscopy by X-ray emission spectroscopy. In “Physical Aspects of Microscopic Characterization of Materials,” Kirschner, J., Murata, K. & Venables, J.A. (Eds.), Scanning Microscopy International, Suppl. 1, pp. 123134.
Lyman, C.E. & Ackland, D.W. (1991). The standard hole count test: A progress report. In Microbeam Analysis—1991, Howitt, D.G. (Ed.), pp. 720721. San Francisco, CA: San Francisco Press.
Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., von Harrach, H.S., Nicholls, A.W., & Statham, P.J. (1994). High performance X-ray detection in a new analytical electron microscopy. J Microsc 176, 8598.Google Scholar
Malinowski, E.R. (2002) Factor Analysis in Chemistry, 3rd ed. New York: Wiley.
Michael, J.R., Williams, D.B., Klein, C., & Ayer, R. (1990). The measurement and calculation of the X-ray spatial resolution obtained in the analytical electron microscope. J Microsc 160, 4153.Google Scholar
Miller, M.K. & Burke, M.G. (1993). An APFIM/AEM characterization of alloy X-750. Appl Surf Sci 67, 292298.Google Scholar
Mory, C., Tence, M., & Colliex, C. (1985). Theoretical study of the characteristics of the probe for a STEM with a field emission gun. J Microsc Spectrosc Electron 10, 381387.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., Jr., & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.Google Scholar
Newbury, D.E. (2005). X-ray spectrometry and spectrum image mapping at output count rates above 100 kHz with a silicon drift detector on a scanning electron microscope. Scanning 27, 227239.Google Scholar
Pennycook, S.J. (1982). High resolution electron microscopy and microanalysis. Contemp Phys 23, 371400.Google Scholar
Reed, S.J.B. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405410.Google Scholar
Rodríguez-González, B., Burrows, A., Watanabe, M., Kiely, C.J., & Liz Marzán, L.M. (2005). Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties. J Mater Chem 15, 17551759.Google Scholar
Romig, A.D., Jr. & Goldstein, J.I. (1979). Detectability limit and spatial resolution in STEM X-ray analysis: Application to Fe-Ni. In Microbeam Analysis—1979, Newbury, D.E. (Ed.), pp. 124128. San Francisco, CA: San Francisco Press.
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 95, 1924.Google Scholar
Rossouw, C.J., Forwood, C.T., Gibson, M.A., & Miller, P.R. (1997). Generation and absorption of characteristic X-rays under dynamical electron diffraction conditions. Micron 28, 125137.Google Scholar
Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarsh, J., & Cockayne, D. (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Electron Microsc 54, 119121.Google Scholar
Van Cappellan, E. & Schmitz, A. (1992). A simple spot-size versus pixel-size criterion for X-ray microanalysis of thin foils. Ultramicroscopy 41, 193199.Google Scholar
Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E., & Pennycook, S.J. (2005). Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu Rev Mater Res 35, 539569.Google Scholar
Watanabe, M. & Williams, D.B. (1999a). Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78, 89101.Google Scholar
Watanabe, M. & Williams, D.B. (1999b). The new form of the ζ-factor method for quantitative microanalysis in AEM-XEDS and its evaluation. Microsc Microanal 5(Suppl. 2), 8889.Google Scholar
Watanabe, M. & Williams, D.B. (2003). Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method. Z Metallk 94, 307316.Google Scholar
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J Microsc 221, 89109.Google Scholar
Williams, D.B. (1987). Practical Analytical Electron Microscopy in Materials Science, 2nd ed. Mahwah, NJ: Philips Electron Optics Publishing Group.
Williams, D.B., Michael, J.R., Goldstein, J.I., & Romig, A.D., Jr. (1992). Definition of the spatial resolution in X-ray microanalysis in thin foils. Ultramicroscopy 47, 121132.Google Scholar
Williams, D.B., Papworth, A.J., & Watanabe, M. (2002). High resolution X-ray mapping in the STEM. J Electron Microsc 51S, S113S126.Google Scholar
Zach, J. & Haider, M. (1995). Aberration correction in a low voltage SEM by a multipole corrector. Nucl Instrum Methods Phys Res A 363, 316325.Google Scholar
Zaluzec, N.J. (2004). XEDS systems for the next generation analytical electron microscope. Microsc Microanal 10(Suppl. 2), 122123.Google Scholar
Ziebold, T.O. (1967). Precision and sensitivity in electron microprobe analysis. Anal Chem 39, 858861.Google Scholar