Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T15:17:46.108Z Has data issue: false hasContentIssue false

Histomorphometric Parameters of the Growth Plate and Trabecular Bone in Wild-Type and Trefoil Factor Family 3 (Tff3)-Deficient Mice Analyzed by Free and Open-Source Image Processing Software

Published online by Cambridge University Press:  15 June 2017

Nikola Bijelić*
Affiliation:
Department of Histology and Embryology, Faculty of Medicine, University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
Tatjana Belovari
Affiliation:
Department of Histology and Embryology, Faculty of Medicine, University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
Dunja Stolnik
Affiliation:
Public Health Centre Vinkovci, Kralja Zvonimira 53, 32100 Vinkovci, Croatia
Ivana Lovrić
Affiliation:
Department of Histology and Embryology, Faculty of Medicine, University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
Mirela Baus Lončar
Affiliation:
Department of Molecular Medicine, Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia
*
*Corresponding author. nbijelic@mefos.hr
Get access

Abstract

Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.

Type
Instrumentation and Software
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Primary institution of research.

References

Arena, E.T., Rueden, C.T., Hiner, M.C., Wang, S., Yuan, M. & Eliceiri, K.W. (2017). Quantitating the cell: Turning images into numbers with ImageJ. WIREs Dev Biol 6, e260.CrossRefGoogle ScholarPubMed
Baus Lončar, M., Kayademir, T., Takaishi, S. & Wang, T. (2005). Trefoil factor family 2 deficiency and immune response. Cell Mol Life Sci 62, 29472955.CrossRefGoogle ScholarPubMed
Belovari, T., Bijelić, N., Tolušić Levak, M. & Baus Lončar, M. (2015). Trefoil factor family peptides TFF1 and TFF3 in the nervous tissues of developing mouse embryo. Bosn J Basic Med Sci 15, 3337.Google Scholar
Bijelić, N., Belovari, T. & Baus Lončar, M. (2013). Trefoil factor family protein 3 (TFF3) is present in cartilage during endochondral ossification in the developing mouse fetus. Acta Histochem 115, 204208.Google Scholar
Bijelić, N., Perić Kačarević, Ž., Belovari, T. & Radić, R. (2015). Trefoil factor family protein 3 affects cancellous bone formation in the secondary centers of ossification of mouse tibiae. Period Biol 117, 5964.Google Scholar
Collins, T.J. (2007). ImageJ for microscopy. Biotechniques 43, 2530.CrossRefGoogle ScholarPubMed
Dalle Carbonare, L., Valenti, M.T., Bertoldo, F., Zanatta, M., Zenari, S., Realdi, G., Lo Cascio, V. & Giannini, S. (2005). Bone microarchitecture evaluated by histomorphometry. Micron 36, 609616.Google Scholar
Damron, T.A., Margulies, B.S., Strauss, J.A., O’Hara, K., Spadaro, J.A. & Farnum, C.E. (2003). Sequential histomorphometric analysis of the growth plate following irradiation with and without radioprotection. J Bone Joint Surg Am 85–A, 13021313.Google Scholar
Dempster, D.W., Compston, J.E., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., Recker, R.R. & Parfitt, A.M. (2013). Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28, 217.Google Scholar
Doube, M., Kłosowski, M.M., Arganda-Carreras, I., Cordelières, F.P., Dougherty, R.P., Jackson, J.S., Schmid, B., Hutchinson, J.R. & Shefelbine, S.J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 10761079.Google Scholar
Egan, K.P., Brennan, T.A. & Pignolo, R.J. (2012). Bone histomorphometry using free and commonly available software. Histopathology 61, 11681173.Google Scholar
Fukai, A., Kawamura, N., Saito, T., Oshima, Y., Ikeda, T., Kugimiya, F., Higashikawa, A., Yano, F., Ogata, N., Nakamura, K., Chung, U.-I. & Kawaguchi, H. (2010). Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum 62, 826836.Google Scholar
Hinz, M., Schwegler, H., Chwieralski, C.E., Laube, G., Linke, R., Pohle, W. & Hoffmann, W. (2004). Trefoil factor family (TFF) expression in the mouse brain and pituitary: Changes in the developing cerebellum. Peptides 25, 827832.Google Scholar
Hoffmann, W. (2005). Trefoil factors TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cell Mol Life Sci 62, 29322938.Google Scholar
Hoffmann, W., Jagla, W. & Wiede, A. (2001). Molecular medicine of TFF-peptides: From gut to brain. Histol Histopathol 16, 319334.Google Scholar
Homminga, J., McCreadie, B.R., Ciarelli, T.E., Weinans, H., Goldstein, S.A. & Huiskes, R. (2002). Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30, 759764.CrossRefGoogle Scholar
Lubka, M., Müller, M., Baus-Lončar, M., Hinz, M., Blaschke, K., Hoffmann, W., Pfister, M., Löwenheim, H., Pusch, C.M., Knipper, M. & Blin, N. (2008). Lack of Tff3 peptide results in hearing impairment and accelerated presbyacusis. Cell Physiol Biochem 21, 437444.Google Scholar
Lukić, I.K., Grčević, D., Kovačić, N., Katavić, V., Ivčević, S., Kalajzić, I. & Marušić, A. (2005). Alteration of newly induced endochondral bone formation in adult mice without tumour necrosis factor receptor 1. Clin Exp Immunol 139, 236244.Google Scholar
Mashimo, H., Wu, D.C., Podolsky, D.K. & Fishman, M.C. (1996). Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274, 262265.Google Scholar
Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M. & Recker, R.R. (1987). Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2, 595610.CrossRefGoogle ScholarPubMed
Parkinson, I.H. & Fazzalari, N.L. (2013). Characterisation of trabecular bone structure. In Skeletal Aging and Osteoporosis, Studies in Mechanobiology, Tissue Engineering and Biomaterials , Silva, M.J. (Ed.), pp. 3151. Berlin, Heidelberg: Springer.Google Scholar
Posey, K.L., Hankenson, K., Veerisetty, A.C., Bornstein, P., Lawler, J. & Hecht, J.T. (2008). Skeletal abnormalities in mice lacking extracellular matrix proteins, thrombospondin-1, thrombospondin-3, thrombospondin-5, and type IX collagen. Am J Pathol 172, 16641674.Google Scholar
Regalo, G., Wright, N.A. & Machado, J.C. (2005). Trefoil factors: From ulceration to neoplasia. Cell Mol Life Sci 62, 29102915.Google Scholar
Rösler, S., Haase, T., Claassen, H., Schulze, U., Schicht, M., Riemann, D., Brandt, J., Wohlrab, D., Müller-Hilke, B., Goldring, M.B., Sel, S., Varoga, D., Garreis, F. & Paulsen, F.P. (2010). Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytes. Arthritis Rheum 62, 815825.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). FIJI: An open-source platform for biological-image analysis. Nat Methods 9, 676682.Google Scholar
Schindelin, J., Rueden, C.T., Hiner, M.C. & Eliceiri, K.W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev 82, 518529.Google Scholar
Silva, M.J. & Gibson, L.J. (1997). Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone 21, 191199.Google Scholar
Xu, L., Teng, X., Guo, J. & Sun, M. (2012). Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 35, 308315.Google Scholar
Yao, X., Chen, H., Ohtake, N. & Shoumura, S. (2006). Morphological alterations in the growth plate cartilage of ovariectomized mice. Med Mol Morphol 39, 193197.Google Scholar
Zhou, Z., Apte, S.S., Soininen, R., Cao, R., Baaklini, G.Y., Rauser, R.W., Wang, J., Cao, Y. & Tryggvason, K. (2000). Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97, 40524057.Google Scholar