Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:29:02.272Z Has data issue: false hasContentIssue false

Growth Rate Determination through Automated TEM Image Analysis: Crystallization Studies of Doped SbTe Phase-Change Thin Films

Published online by Cambridge University Press:  07 April 2010

Jasper L.M. Oosthoek
Affiliation:
Materials Innovation Institute M2i and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
Bart J. Kooi*
Affiliation:
Materials Innovation Institute M2i and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
Jeff T.M. De Hosson
Affiliation:
Materials Innovation Institute M2i and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
Rob A.M. Wolters
Affiliation:
NXP-TSMC Research Center, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
Dirk J. Gravesteijn
Affiliation:
NXP-TSMC Research Center, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
Karen Attenborough
Affiliation:
NXP-TSMC Research Center, Kapeldreef 75, 3001 Leuven, Belgium
*
Corresponding author. E-mail: B.J.Kooi@rug.nl
Get access

Abstract

A computer-controlled procedure is outlined here that first determines the position of the amorphous-crystalline interface in an image. Subsequently, from a time series of these images, the velocity of the crystal growth front is quantified. The procedure presented here can be useful for a wide range of applications, and we apply the new approach to determine growth rates in a so-called fast-growth-type phase-change material. The growth rate (without nucleation) of this material is of interest for comparison with identical material used in phase-change random access memory cells. Crystal growth rates in the amorphous phase-change layers have been measured at various temperatures using in situ heating in a transmission electron microscope. Doped SbTe films (20 nm thick) were deposited on silicon nitride membranes, and samples with and without silicon oxide capping layer were studied. The activation energy for growth was found to be 3.0 eV. The samples without capping layer exhibit a nucleation rate that is an order of magnitude higher than the samples with a silicon oxide capping layer. This difference can be attributed to the partial oxidation of the phase-change layer in air. However, the growth rates of the samples with and without capping are quite comparable.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bez, R. & Pirovano, A. (2004). Non-volatile memory technologies: Emerging concepts and new materials. Mater Sci Semicond Process 7, 349355.CrossRefGoogle Scholar
Borg, H.J., Van Schijndel, M., Rijpers, J.C.N., Lankhorst, M.H.R., Zhou, G.F., Dekker, M.J., Ubbens, I.P.D. & Kuijper, M. (2001). Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn J Appl Phys 40, 15921597.CrossRefGoogle Scholar
Castro, D.T., Goux, L., Hurkx, G.A.M., Attenborough, K., Delhougne, R., Lisoni, J., Jedema, F.J., Zandt, M.A.A., Wolters, R.A.M., Gravesteijn, D.J., Verheijen, M., Kaiser, M., Weemaes, R.G.R. & Wouters, D.J. (2007). Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-change memory cells. In IEEE International Electron Devices Meeting, pp. 315318. Washington, DC: IEEE.Google Scholar
Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga, M., Risk, W.P., Happ, T.D., McClelland, G.M., Breitwisch, M., Schrott, A., Philipp, J.B., Lee, M.H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C.F., Joseph, E., Zaidi, S., Yee, B., Lung, H.L., Bergmann, R. & Lam, C. (2006). Ultra-thin phase-change bridge memory device using GeSb. In IEEE International Electron Devices Meeting, pp. 14. San Francisco, CA: IEEE.Google Scholar
Cho, W.Y., Cho, B.-H., Choi, B.-G., Oh, H.-R., Kang, S., Kim, K.-S., Kim, K.-H., Kim, D.-E., Kwak, C.-K., Byun, H.-G., Hwang, Y., Ahn, S., Koh, G.-H., Jeong, G., Jeong, H. & Kim, K. (2005). A 0.18-μm 3.0-V 64-Mb nonvolatile phase-transition random access memory (PRAM). IEEE J Solid-State Circ 40, 293300.Google Scholar
Goux, L., Castro, D.T., Hurkx, G.A.M., Lisoni, J.G., Delhougne, R., Gravesteijn, D.J., Attenborough, K. & Wouters, D.J. (2009). Degradation of the reset switching during endurance testing of a phase-change line cell. IEEE Trans Electron Devices 56, 354358.CrossRefGoogle Scholar
Hellmig, J., Mijiritskii, A.V., Borg, H.J., Musialkova, K. & Vromans, P. (2003). Dual-layer Blu-ray Disc based on fast-growth phase-change materials. Jpn J Appl Phys 42, 848851.CrossRefGoogle Scholar
Her, Y.C., Chen, H. & Hsu, Y.S. (2003). Effects of Ag and In addition on the optical properties and crystallization kinetics of eutectic Sb70Te30 phase-change recording film. J Appl Phys 93, 1009710103.CrossRefGoogle Scholar
Her, Y.C. & Hsu, Y.S. (2003). Optical properties and crystallization characteristics of Ge-doped Sb70Te30 phase change recording film. Jpn J Appl Phys 42, 804808.CrossRefGoogle Scholar
Hudgens, S. & Johnson, B. (2004). Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull 29, 829832.CrossRefGoogle Scholar
Kalb, J., Spaepen, F. & Wuttig, M. (2004). Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl Phys Lett 84, 52405242.CrossRefGoogle Scholar
Khulbe, P.K., Hurst, T., Horie, M. & Mansuripur, M. (2002). Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks. Appl Opt 41, 62206229.CrossRefGoogle ScholarPubMed
Kolosov, V.Y. & Tholen, A.R. (2000). Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films. Acta Mater 48, 18291840.CrossRefGoogle Scholar
Kooi, B.J. & De Hosson, J.T.M. (2004). On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J Appl Phys 95, 47144721.CrossRefGoogle Scholar
Kooi, B.J., Groot, W.M.G. & De Hosson, J.T.M. (2004). In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J Appl Phys 95, 924932.CrossRefGoogle Scholar
Kooi, B.J., Pandian, R., De Hosson, J.T.M. & Pauza, A. (2005). In situ transmission electron microscopy study of the crystallization of fast-growth doped SbxTe alloy films. J Mater Res 20, 18251835.CrossRefGoogle Scholar
Lacaita, A.L. (2006). Phase change memories: State-of-the-art, challenges and perspectives. Solid State Electr 50, 2431.CrossRefGoogle Scholar
Lankhorst, M.H.R., Ketelaars, B. & Wolters, R.A.M. (2005). Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater 4, 347352.CrossRefGoogle ScholarPubMed
Lankhorst, M.H.R., Van Pieterson, L., Van Schijndel, M., Jacobs, B.A.J. & Rijpers, J.C.N. (2003). Prospects of doped Sb-Te phase-change materials for high-speed recording. Jpn J Appl Phys 42, 863868.CrossRefGoogle Scholar
Meinders, E.R. & Lankhorst, M.H.R. (2003). Determination of the crystallisation kinetics of fast-growth phase-change materials for mark-formation prediction. Jpn J Appl Phys 42, 809812.CrossRefGoogle Scholar
Morilla, M.C., Afonso, C.N., Petfordlong, A.K. & Doole, R.C. (1996). Influence of the relaxation state on the crystallization kinetics of Sb-rich SbGe amorphous films. Philos Mag A 73, 12371247.CrossRefGoogle Scholar
Oomachi, N., Ashida, S., Nakamura, N., Yusu, K. & Ichihara, K. (2002). Recording characteristics of Ge doped eutectic SbTe phase change discs with various compositions and its potential for high density recording. Jpn J Appl Phys 41, 16951697.CrossRefGoogle Scholar
Pandian, R., Kooi, B.J., De Hosson, J.T.M. & Pauza, A. (2006). Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films. J Appl Phys 100, 123511.CrossRefGoogle Scholar
Petfordlong, A.K., Doole, R.C., Afonso, C.N. & Solis, J. (1995). In-situ studies of the crystallization kinetics in Sb-Ge films. J Appl Phys 77, 607613.CrossRefGoogle Scholar
Privitera, S., Bongiorno, C., Rimini, E., Zonca, R., Pirovano, A. & Bez, R. (2003). Amorphous-to-Polycrystal Transition in GeSbTe thin films. In Advanced Data Storage Materials and Characterization Techniques, HH1.4. San Francisco, CA: Materials Research Society.Google Scholar
Ruitenberg, G., Petford-Long, A.K. & Doole, R.C. (2002). Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J Appl Phys 92, 31163123.CrossRefGoogle Scholar
Satoh, I. & Yamada, N. (2001). DVD-RAM for all audio/video, PC, and network applications. Proc SPIE 4085, 283290.CrossRefGoogle Scholar
Schulze, M.A. & Pearce, J.A. (1993). Value-and-criterion filters: A new filter structure based upon morphological opening and closing. Proc SPIE 1902, 106115.CrossRefGoogle Scholar
Wuttig, M. & Yamada, N. (2007). Phase-change materials for rewriteable data storage. Nat Mater 6, 824832.CrossRefGoogle ScholarPubMed
Zhou, G.F. (2001). Materials aspects in phase change optical recording. Mater Sci Eng A 304-306, 7380.CrossRefGoogle Scholar