Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T21:53:49.369Z Has data issue: false hasContentIssue false

Environmental Scanning Electron Microscopy Technique to Identify Asbestos Phases Inside Ferruginous Bodies

Published online by Cambridge University Press:  26 February 2013

Alessandro Croce
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro,”Viale Teresa Michel 11, 15121 Alessandria, Italy
Maya Musa
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro,”Viale Teresa Michel 11, 15121 Alessandria, Italy
Mario Allegrina
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro,”Viale Teresa Michel 11, 15121 Alessandria, Italy
Paolo Trivero
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro,”Viale Teresa Michel 11, 15121 Alessandria, Italy
Caterina Rinaudo*
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro,”Viale Teresa Michel 11, 15121 Alessandria, Italy
*
*Corresponding author. E-mail: caterina.rinaudo@mfn.unipmn.it
Get access

Abstract

Ferruginous bodies observed in lungs of patients affected by mesothelioma, asbestosis, and pulmonary carcinoma are important to relate the illness to exposure, environmental or occupational, to asbestos. Identification of the inorganic phase constituting the core of the ferruginous bodies, formed around asbestos but also around phases different from asbestos, is essential for legal purposes. Environmental scanning electron microscopy/energy dispersive spectroscopy was used to identify the fibrous mineral phase in the core of ferruginous bodies observed directly in thin sections of tissue, without digestion of the biological matrix. Spectra were taken with sequential analyses along a line crossing the core of the ferruginous bodies. By comparing the spectra taken near to and far from the core, the chemical elements that make up the core could be identified.

Type
Biological Applications: Short Communications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arul, K.J. & Holt, P.F. (1980). Clearance of asbestos bodies from the lung: A personal view. Br J Ind Med 37, 273277.Google Scholar
Belluso, E., Bellis, D., Fornero, E., Capella, S., Ferraris, G. & Coverlizza, S. (2006). Assessment of inorganic fibre burden in biological samples by SEM-EDS. Microchim Acta 155, 95100.Google Scholar
Bernstein, D., Castranova, V., Donaldson, K., Fubini, B., Hadley, J., Hesterberg, T., Kane, A., Lai, D., McConnell, E.E., Muhle, H., Oberdorster, G., Olin, S. & Warheit, D.B. (2005). Testing of fibrous particles: Short-term assays and strategies. Report of an ILSI risk science institute working group. Inhal Toxicol 17, 497537.Google Scholar
Chasteen, N.D. & Harrison, P.M. (1999). Mineralization in ferritin: An efficient means of iron storage. J Struct Biol 126, 182194.Google Scholar
Churg, A.M. & Warnoc, M.L. (1981). Asbestos and other ferruginous bodies: Their formation and clinical significance. Am J Pathol 102(3), 447456.Google Scholar
De Vuyst, P., Karjalainen, A., Dumortier, P., Pairon, J.C., Monsò, E., Brochard, P., Teschler, H., Tossavainen, A. & Gibbs, A. (1998). Guidelines for mineral fibre analyses in biological samples: Report of the ERS working group. Eur Respir J 11, 14161426.Google Scholar
Dodson, R.F. & Levin, J.L. (2001). An unusual case of mixed-dust exposure involving a “noncommercial” asbestos. Environ Health Persp 109, 199203.CrossRefGoogle ScholarPubMed
Dodson, R.F., O'Sullivan, M., Corn, C.J., Garcia, J.G.N., Stocks, J.M. & Griffith, D.E. (1993). Analysis of ferruginous bodies in bronchoalveolar lavage from foundry workers. Br J Ind Med 50, 10321038.Google Scholar
Dumortier, P., Broucke, I. & De Vuyst, P. (2001). Pseudoasbestos bodies and fibers in bronchoalveolar lavage of refractory ceramic fiber users. Am J Resp Crit Care 164, 499503.Google Scholar
Ghio, A.J., Churg, A. & Roggli, V.L. (2004). Ferruginous bodies: Implications in the mechanism of fiber and particle toxicity. Toxicol Pathol 32, 643649.CrossRefGoogle ScholarPubMed
Giacobbe, C., Gualtieri, A.F., Quartieri, S., Rinaudo, C., Allegrina, M. & Andreozzi, G. (2010). Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). Eur J Mineral 22, 535546.Google Scholar
Gross, P., Cralley, L.J. & DeTreville, R.T.P. (1967). “Asbestos” bodies: Their nonspecificity. Am Ind Hyg Assoc J 28, 541542.Google Scholar
Guidotti, T.L. (2001). The debate on banning asbestos. Can Med Assoc J 165, 11891190.Google Scholar
Guthrie, G.D. (1992). Biological effects of inhaled minerals. Am Mineral 77, 225243.Google Scholar
Guthrie, G.D. & Mossman, B.T. (Eds.) (1993). Health Effects of Mineral Dusts, Reviews in Mineralogy, Vol. 28, Ribbe, P.H. (Series Ed.). Washington, DC: Mineralogical Society of America.CrossRefGoogle Scholar
Kane, A.B. & Kumar, V. (1999). Environmental and nutritional pathology. In Robbins Pathologic Basis of Disease, 6th ed., Cotran, R.S., Kumar, V. & Collins, T. (Eds.), pp. 403458. Philadelphia, PA: Saunders W.B. Company.Google Scholar
Koerten, H.K., Hazekamp, J., Kroon, M. & Daems, W.T. (1990). Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136(1), 141157.Google ScholarPubMed
Langer, A.M., Rubin, I.B. & Selikoff, I.J. (1972). Chemical characterization of asbestos body cores by electron microprobe analysis. J Histochem Cytochem 20(9), 723734.Google Scholar
Lund, L.G., Williams, M.G., Dodson, R.F. & Aust, A.E. (1994). Iron associated with asbestos bodies is responsible for the formation of single strand breaks in ϕ X174 RFI DNA. Occup Environ Med 51, 200204.Google Scholar
Marchand, J.L., Luce, D., Leclerc, A., Goldberg, P., Orlowski, E., Bugle, I. & Brugère, J. (2000). Laryngeal and hypopharyngeal cancer and occupational exposure to asbestos and man-made vitreous fibers: Results of a case-control study. Am J Ind Med 37, 581589.Google Scholar
Meredith, S.K., Taylor, V.M. & McDonald, J.C. (1991). Occupational respiratory disease in the United Kingdom 1989: A report of the British Thoracic Society and the Society of Occupational Medicine by the SWORD project group. Br J Ind Med 48, 292298.Google Scholar
Musa, M., Croce, A., Allegrina, M., Rinaudo, C., Belluso, E., Bellis, D., Toffalorio, F. & Veronesi, G. (2012). The use of Raman spectroscopy to identify inorganic phases in iatrogenic pathological lesions of patients with malignant pleural mesothelioma. Vib Spectrosc 61, 6671.Google Scholar
Rinaudo, C., Allegrina, M., Fornero, E., Musa, M., Croce, A. & Bellis, D. (2010a). Micro-Raman spectroscopy and VP-SEM/EDS applied to the identification of mineral particles and fibres in histological sections. J Raman Spectrosc 41, 2732.Google Scholar
Rinaudo, C., Belluso, E. & Gastaldi, D. (2004). Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral Mag 68(3), 455465.CrossRefGoogle Scholar
Rinaudo, C., Cairo, S., Gastaldi, D., Gianfagna, A., Mazziotti-Tagliani, S., Tosi, G. & Conti, C. (2006). Characterization of fluoro-edenite by μ-Raman and μ-FTIR spectroscopy. Mineral Mag 70, 291298.Google Scholar
Rinaudo, C., Croce, A., Musa, M., Fornero, E., Allegrina, M., Trivero, P., Bellis, D., Sferch, D., Toffalorio, F., Veronesi, G. & Pelosi, G. (2010b). Study of inorganic particles, fibres and asbestos bodies by VP-SEM/EDS and micro-Raman spectroscopy in thin sections of lung and pleural plaque. Appl Spectrosc 64, 571577.Google Scholar
Rinaudo, C., Gastaldi, D., Belluso, E. & Capella, S. (2005). Application of Raman spectroscopy on asbestos fibre identification. Neues Jb Miner Abh 182(1), 3136.Google Scholar
Roggli, V.L. (1992). Asbestos bodies and non-asbestos ferruginous bodies. In Pathology of Asbestos-Associated Diseases, 2nd ed., Roggli, V.L., Victor, L., Oury, T.D. & Sporn, T.A. (Eds.), pp. 3470. New York: Lippincott Williams & Wilkens.Google Scholar
Roggli, V.L. (2006). The role of analytical SEM in the determination of causation in malignant mesothelioma. Ultrastruct Pathol 30, 3135.Google Scholar
Tannapfel, A. (2011). Malignant Mesothelioma. Bochum, Germany: Springer Verlag.Google Scholar
Virta, R.L. (1985). The phase relationship of talc and amphiboles in a fibrous talc sample. US Bur Mines Rep Invest 8923, 111.Google Scholar