Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-25T03:54:33.687Z Has data issue: false hasContentIssue false

Energy Loss by Channeled Electrons: A Quantitative Study on Transition Metal Oxides

Published online by Cambridge University Press:  29 August 2013

Kazuyoshi Tatsumi*
Affiliation:
Department of Materials, Physics and Energy Engineering, Nagoya University, Chikusa, Nagoya, Aichi Pref. 464-8603, Japan
Shunsuke Muto
Affiliation:
Department of Materials, Physics and Energy Engineering, Nagoya University, Chikusa, Nagoya, Aichi Pref. 464-8603, Japan
Ján Rusz
Affiliation:
Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
*
*Corresponding author. E-mail: k-tatsumi@nucl.nagoya-u.ac.jp
Get access

Abstract

Electron energy-loss spectroscopy (EELS) attached to current transmission electron microscopes can probe not only element-selective chemical information, but also site-selective information that depends on the position that a specific element occupies in a crystal lattice. The latter information is exploited by utilizing the Bloch waves symmetry in the crystal, which changes with its orientation with respect to the incident electron wave (electron channeling). We demonstrate the orientation dependence of the cross-section of the electron energy-loss near-edge structure for particular crystalline sites of spinel ferrites, by quantitatively taking into account the dynamical diffraction effects with a large number of the diffracted beams. The theoretical results are consistent with a set of experiments in which the transition metal sites in spinel crystal structures are selectively excited. A new measurement scheme for site-selective EELS using a two-dimensional position-sensitive detector is proposed and validated by theoretical predictions and trial experiments.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was performed primarily at Nagoya University.

References

Antic, B., Kremenovic, A., Nikolic, A.S. & Stoiljkovic, M. (2004). Cation distribution and size-strain microstructure analysis in ultrarine Zn-Mn ferrites obtained from acetylacetonato complexes. J Phys Chem B 108, 1264612651.Google Scholar
Batson, P.E. (1993). Symmetry-selected electron-energy-loss scattering in diamond. Phys Rev Lett 70, 18221825.Google Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. (2001). WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, chapter 1. Vienna: Techn. Universität Wien, Institut für Physikalische und Theoretische Chemie.Google Scholar
Calmels, L. & Rusz, J. (2011). Atomic site sensitivity of the energy loss magnetic chiral dichroic spectra of complex oxides. J Appl Phys 109, 07D328. CrossRefGoogle Scholar
Denecke, M.A., Gunssner, W., Buxbaum, G. & Kuske, P. (1992). Manganese valence in precipitated manganese ferrite. Mater Res Bull 27, 507514.Google Scholar
Hetaba, W., Löffler, S. & Shattschneider, P. (2011). Site specific elemental analysis using electron channeling. In Proceedings of the 10th Mutlinational Congress on Microscopy, September 4–9, Urbino, Italy , pp. 5354.Google Scholar
Hetaba, W., Löffler, S. & Shattschneider, P. (2012). Site-specific elemental analysis under electron channelling conditions. In Proceedings of the 15th European Microscopy Congress, September 16–21, Manchester, UK .Google Scholar
Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W. & Whelan, M.J. (1977). Electron Microscopy of Thin Crystals, chapter 8. London: Butterworths.Google Scholar
Holgersson, S. (1927). Roentgenographische Strukturuntersuchungen der Mineralien der Spinellgruppe und von synthetisch dargestellten Substanzen vom Spinelltyp. Lunds universitets årsskrift. N.F. Avd. 2 23, 19.Google Scholar
Kohl, H. & Rose, H. (1985). Theory of image-formation by inelastically scattered electrons in the electron-microscope. Adv El Opt 65, 173226.Google Scholar
Krivanek, O.L., Disko, M.M., Taftø, J. & Spence, J.C.H. (1982). Electron energy loss spectroscopy as a probe of the local atomic environment. Ultramicroscopy 9, 249254.Google Scholar
Maslen, V.W. & Rossouw, C.J. (1984). Implications of (e,2e) scattering for inelastic electron-diffraction in crystals. 1. Theoretical. Phil Mag A 49, 735742.Google Scholar
Matsumura, S., Soeda, T., Zaluzec, N.J. & Kinoshita, C. (1999). Electron channeling X-ray microanalysis for cation configuration in irradiated magnesium aluminate spinel. In MRS Meeting Proc 589, 129.CrossRefGoogle Scholar
Nelhiebel, M., Schattschneider, P. & Jouffrey, B. (2000). Observation of ionization in a crystal interferometer. Phys Rev Lett 85, 18471850.CrossRefGoogle Scholar
Nesvizhskii, A.I., Ankudinov, A.L. & Rehr, J.J. (2001). Normalization and convergence of X-ray absorption sum rules. Phys Rev B 63, 094412. Google Scholar
Oxley, M.P. & Allen, L.J. (2003). ICSC: A program for calculating inelastic scattering cross sections for fast electrons incident on crystals. J Appl Cryst 36, 940943.Google Scholar
Reimer, L., Fromm, I., Hirsch, P., Plate, U. & Rcnnekamp, R. (1992). Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicroscopy 46, 335347.CrossRefGoogle Scholar
Rossouw, C.J. & Maslen, V.W. (1984). Implications of (e,2e) scattering for inelastic electron-diffraction in crystals. 2. Application of the theory. Phil Mag A 49, 743757.CrossRefGoogle Scholar
Rusz, J., Muto, S. & Tatsumi, K. (2013). New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES. Ultramicroscopy 125, 8188.Google Scholar
Rusz, J., Rubino, S. & Schattschneider, P. (2007). First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets. Phys Rev B 75, 214425. Google Scholar
Saitoh, K., Tatara, Y. & Tanaka, N. (2010). Atom-column distinction by Kikuchi pattern observed by an aberration-corrected convergent electron probe. J Elec Microsc 59, 387394.Google Scholar
Saldin, D.K. (1987). The theory of electron energy-loss near-edge structure. Phil Mag B 56, 515525.CrossRefGoogle Scholar
Saldin, D.K. & Rez, P. (1987). The theory of the excitation of atomic inner-shells in crystals by fast electrons. Phil Mag B 55, 481489.Google Scholar
Schattschneider, P. (1986). Fundamentals of Inelastic Electron Scattering. Wien, Germany: Springer.Google Scholar
Schattschneider, P., Hébert, C. & Jouffrey, B. (2001). Orientation dependence of ionization edges in EELS. Ultramicroscopy 86, 343353.Google Scholar
Schattschneider, P., Jouffrey, B. & Nelhiebel, M. (1996a). Dynamical diffraction in electron-energy-loss spectrometry: The independent Bloch-wave model. Phys Rev B 54, 38613868.Google Scholar
Schattschneider, P., Nelhiebel, M., Schenner, M., Grogger, W. & Hoffer, F. (1996b). Diffraction effects in inner-shell ionization edges. J Microsc 183, 1826.Google Scholar
Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kuneš, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G. & Rossi, G. (2006). Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486488.Google Scholar
Spence, J.C.H. & Taftø, J. (1983). ALCHEMI—A new technique for locating atoms in small crystals. J Microsc 130, 147154.CrossRefGoogle Scholar
Spence, J.C.H. & Zuo, J.M. (1992). Electron Microdiffraction. New York: Plenum Press.Google Scholar
Taftø, J. (1987). Reciprocity in electron energy-loss spectra from non-centrosymmetric crystals. Acta Cryst A43, 208211.CrossRefGoogle Scholar
Taftø, J. & Krivanek, O.L. (1982a). Site-specific valence determination by electron energy-loss spectroscopy. Phys Rev Lett 48, 560563.Google Scholar
Taftø, J. & Krivanek, O.L. (1982b). Characteristic energy losses from channeled 100 keV electrons. Nucl Inst Meth 194, 153158.Google Scholar
Tatsumi, K. & Muto, S. (2009). Local electronic structure analysis by site-selective ELNES using electron channeling and first-principles calculations. J Phys Condens Matter 21, 104213. Google Scholar
Tatsumi, K., Muto, S., Nishida, I. & Rusz, J. (2010). Site-specific electronic configurations of Fe 3d states by energy loss by channeled electrons. Appl Phys Lett 96, 201911. CrossRefGoogle Scholar
Tatsumi, K., Muto, S., Yamamoto, Y., Ikeno, H., Yoshioka, S. & Tanaka, I. (2006). Site-specific electronic structure analysis by channeling EELS and first-principles calculations. Ultramicroscopy 106, 10191023.Google Scholar
Wang, Z.Q., Zhong, X.Y., Yu, R., Cheng, Z.Y. & Zhu, J. (2013). Quantitative experimental determination of site-specific magnetic structures by transmitted electrons. Nature Comm 4, 1395. Google Scholar
Weickenmeier, A. & Kohl, H. (1989). Computation of the atomic inner-shell excitation cross-sections for fast electrons in crystals. Phil Mag B 60, 467479.Google Scholar
Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr, Sect A: Found Crystallogr A47, 590597.Google Scholar
Yamamoto, Y., Tatsumi, K. & Muto, S. (2007). Site-selective electronic structure of aluminum in oxide ceramics obtained by TEM-EELS analysis using the electron standing-wave method. Mater Trans 48, 25902594.Google Scholar
Zaluzec, N.J., Blackford, M.G., Smith, K.L. & Colella, M. (2005). HARECES measurements of carbon K Shell Excitation in Graphite. Microsc Microanal 11(S2), 718719.Google Scholar