Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:24:44.024Z Has data issue: false hasContentIssue false

Dynamic Nanoimpedance Characterization of the Atomic Force Microscope Tip-Surface Contact

Published online by Cambridge University Press:  13 December 2013

Mateusz Tomasz Tobiszewski*
Affiliation:
Department of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Artur Zieliński
Affiliation:
Department of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Kazimierz Darowicki
Affiliation:
Department of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
*
*Corresponding author. E-mail: mateusztobiszewski@gmail.com
Get access

Abstract

Nanoimpedance measurements, using the dynamic impedance spectroscopy technique, were carried out during loading and unloading force of a probe on three kinds of materials of different resistivity. These materials were: gold, boron-doped diamond, and AISI 304 stainless steel. Changes of impedance spectra versus applied force were registered and differences in the tip-to-sample contact character on each material were revealed. To enable comparison between materials and phases, a new standardization method is proposed, which simulates conditions of initial contact.

Type
Techniques, Software, and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arutunow, A., Darowicki, K. & Tobiszewski, M.T. (2013a). Electrical mapping of AISI 304 stainless steel subjected to intergranular corrosion performed by means of AFM–LIS in the contact mode. Corrosion Sci 71, 3742.CrossRefGoogle Scholar
Arutunow, A., Darowicki, K. & Zieliński, A. (2011). Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel. Electrochim Acta 56, 23722377.CrossRefGoogle Scholar
Arutunow, A., Zieliński, A. & Tobiszewski, M.T. (2013b). Localized impedance measurements of AA2024 and AA2024-T3 performed by means of AFM in contact mode. Anti-Corros Methods Mater 60, 6772.Google Scholar
Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscope. Phys Rev Lett 56, 930933.CrossRefGoogle ScholarPubMed
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Phys Rev Lett 49, 5761.CrossRefGoogle Scholar
Birbilis, N., Meyer, K., Muddle, B.C. & Lynch, S.P. (2009). In situ measurement of corrosion on the nanoscale. Corrosion Sci 51, 15691572.Google Scholar
Burke, P.J. (2004). AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor. Solid State Electron 48, 19811986.Google Scholar
Darowicki, K. (2000). Theoretical description of the measuring method of instantaneous impedance spectra. J Electroanal Chem 486, 101105.CrossRefGoogle Scholar
Darowicki, K. & Ślepski, P. (2003). Dynamic electrochemical impedance spectroscopy of the first order electrode reaction. J Electroanal Chem 547, 18.Google Scholar
Darowicki, K., Zieliński, A. & Kurzydłowski, K.J. (2008). Application of dynamic impedance spectroscopy to atomic force microscopy. Sci Technol Adv Mater 9, 045006. Google Scholar
Eckhard, K., Shin, H., Mizaikoff, B., Schuhmann, W. & Kranz, C. (2007). Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM). Electrochem Commun 9, 13111315.Google Scholar
Kalinin, S.V. & Bonnell, D.A. (2001). Scanning impedance microscopy of electroactive interfaces. Appl Phys Lett 78, 13061308.Google Scholar
Kalinin, S.V. & Bonnell, D.A. (2002). Scanning impedance microscopy of an active Schottky barrier diode. J Appl Phys 91, 832839.Google Scholar
Kopanski, J.J., Marchiando, J.F., Rennex, B.G., Simons, D. & Chau, Q. (2004). Towards reproducible scanning capacitance microscope image interpretation. J Vac Sci Technol B 22, 399405.CrossRefGoogle Scholar
Layson, A., Gadad, S. & Teeters, D. (2003). Resistance measurements at the nanoscale: Scanning probe ac impedance spectroscopy. Electrochim Acta 48, 22072213.Google Scholar
Layson, A.R. & Teeters, D. (2004). Polymer electrolytes confined in nanopores: Using water as a means to explore the interfacial impedance at the nanoscale. Solid State Ion 175, 773780.Google Scholar
O'Hayre, R., Feng, G., Nix, W.D. & Prinz, F.B. (2004b). Quantitative impedance measurement using atomic force microscopy. J Appl Phys 95, 35403549.Google Scholar
O'Hayre, R., Minhwan, L. & Prinz, F.B. (2004a). Ionic and electronic impedance imaging using atomic force microscopy. J Appl Phys 95, 83828392.Google Scholar
Olsson, C.O.A. & Landolt, D. (2003). Passive films on stainless steels-/chemistry, structure and growth. Electrochim Acta 48, 10931104.Google Scholar
Pingree, L.S.C. & Hersam, M.C. (2005). Bridge-enhanced nanoscale impedance microscopy Appl Phys Lett 87, 233117. CrossRefGoogle Scholar
Shao, R., Kalinin, S.V. & Bonnell, D.A. (2003). Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl Phys Lett 82, 18691871.Google Scholar
Stauffer, D.D., Major, R.C., Vodnick, D., Thomas, J.H., Parker, J., Manno, M., Leighton, C. & Gerberich, W. (2012). Plastic response of the native oxide on Cr and Al thin films from in situ conductive nanoindentation. J Mater Res 27, 685693.Google Scholar
Szociński, M., Darowicki, K. & Schaefer, K. (2013). Application of impedance imaging to evaluation of organic coating degradation at a local scale. J Coat Technol Res 10, 6572.CrossRefGoogle Scholar
Tschöpe, A., Sommer, E. & Birringer, R. (2001). Grain size-dependent electrical conductivity of polycrystalline cerium oxide. 1. Experiments. Solid state Ion 139, 255265.Google Scholar
Yang, Y., Lai, K., Tang, Q., Kundhikanjana, W., Kelly, M.A., Zhang, K., Shen, Z. & Li, X. (2012). Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J Micromech Microeng 22, 115040. Google Scholar