Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-02-25T23:01:59.733Z Has data issue: false hasContentIssue false

Development and Application of Synthetic Hematite Reference Material for U-Pb Geochronology

Published online by Cambridge University Press:  30 July 2021

Liam Courtney-Davies
Affiliation:
The University of Adelaide, Pert, Western Australia, Australia
Cristiana Ciobanu
Affiliation:
The University of Adelaide, Australia
Sarah Gilbert
Affiliation:
Adelaide Microscopy, Australia
Simon Tapster
Affiliation:
British Geological Survey, United Kingdom
Marcus Richardson
Affiliation:
University of Adelaide, United States
Nigel Cook
Affiliation:
University of Adelaide, Australia
Max Verdugo-Ihl
Affiliation:
University of Adelaide, Australia
Benjamin Wade
Affiliation:
Adelaide Microscopy, Australia
Kathy Ehrig
Affiliation:
BHP Olympic Dam, Australia
Daniel Condon
Affiliation:
British Geological Survey, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Microscopy and Microanalysis for Real World Problem Solving
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Ciobanu, C.L., Wade, B.P., Cook, N.J., Schmidt, M.A. and Giles, D. (2013) Uranium-bearing hematite from the Olympic Dam Cu–U– Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Research, 238, 129147.CrossRefGoogle Scholar
Courtney-Davies, L., Tapster, S.R., Ciobanu, C.L., Cook, N.J., Verdugo-Ihl, M.R., Ehrig, K.J., Kennedy, A.K., Gilbert, S.E., Condon, D.J. and Wade, B.P. (2019a) A multi-technique evaluation of hydrothermal hematite UPb isotope systematics: Implications for ore deposit geochronology. Chemical Geology, 513, 5472.CrossRefGoogle Scholar
Courtney-Davies, L., Ciobanu, C.L., Richardson, M.W., Prosser, N., Verdugo-Ihl, M.R., Wade, B.P., Gilbert, S.E., Ehrig, K. and Cook, N.J. (2019b). Synthesis of U-Pb doped hematite using a hydrated ferric oxide approach. Journal of Crystal Growth, 513, 4857.CrossRefGoogle Scholar
Courtney-Davies, L., Ciobanu, C.L., Tapster, S.R., Cook, N.J., Ehrig, K.J., Crowley, J.L., Verdugo-Ihl, M.R., Crowley, J., Wade, B.P. and Condon, D.J. (2020) Opening the magmatic-hydrothermal window: High-precision U-Pb geochronology of the Mesoproterozoic Olympic dam Fe-oxide-Cu-U-Au-Ag deposit, South Australia. Economic Geology, 115 (8): 18551870.Google Scholar
Courtney-Davies, L., Gilbert, S.E., Ciobanu, C.L., Tapster, S.R., Richardson, M.W., Cook, N.J., Wade, B.P., Verdugo-Ihl, M.R., Ehrig, K. and Condon, D.J. (2021), A Synthetic Haematite Reference Material for LA-ICP-MS U-Pb Geochronology and Application to Iron Oxide-Cu-Au Systems. Geostandards and Geoanalytical Research. https://doi.org/10.1111/ggr.12365.CrossRefGoogle Scholar
Duff, M.C., Coughlin, J.U. and Hunter, D.B. (2002) Uranium co-precipitation with iron oxide minerals. Geochimica et Cosmochimica Acta, 66, 35333547.CrossRefGoogle Scholar
Keyser, W., Ciobanu, C.L., Cook, N.J., Dmitrijeva, M., Courtney-Davies, L., Feltus, H., Gilbert, S., Johnson, G. and Ehrig, K. (2019) Iron-oxides constrain BIF evolution in terranes with protracted geological histories. The Iron Count prospect, Middleback Ranges, South Australia. Lithos, 324–325, 2038.Google Scholar