Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T23:05:19.206Z Has data issue: false hasContentIssue false

Cryogenic TEM Studies of Bloch and Neel Skyrmion Textures in Lacunar Spinels and Cubic Helimagnets

Published online by Cambridge University Press:  01 August 2018

Franziska Seifert
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany
Felix L. Kern
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany
István Kézsmárki
Affiliation:
Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 6135Augsburg, Germany
Ulrich Rößler
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany
Daniel Wolf
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany
Sebastian Schneider
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany
Darius Pohl
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany Dresden Center for Nanoanalysis, TU Dresden, D-01062Dresden, Germany
Bernd Büchner
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany
Axel Lubk
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, 01069Dresden, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstract
Copyright
© Microscopy Society of America 2018 

References

[1] Bogdanov, A.N. Yablonsky, D.A. Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets", Zh. Eksp. Teor. Fiz 95 1989 178.Google Scholar
[2] Rößler, U.K., Bogdanov, A.N. Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442 2006 797.Google Scholar
[3] Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R. Böni, P. Skyrmion lattice in a chiral magnet. Science 323 2009 915.Google Scholar
[4] Yu, X.Z, Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N. Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 465 2010 901.Google Scholar
[5] Kezsmärki, I., Bordäcs, S., Milde, P., Neuber, E., Eng, L. M., White, J. S., Ronnow, H. M., Dewhurst, C. D., Mochizuki, M., Yanai, K., Nakamura, H., Ehlers, D., Tsurkan, V. Loidl, A. Neel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nature materials 14 2015 1116.Google Scholar
[6] Yu, X. Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W. Z., Ishiwata, S., Matsui, Y. Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Materials 10 2011 106.Google Scholar
[7] Bordäcs, S., Butykai, A., Szigeti, B. G., White, J. S., Cubitt, R., Leonov, A. O., Widmann, S., Ehlers, D., Krug von Nidda, H.-A., Tsurkan, V., Loidl, A. Kezsmärki, I. Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet. Sci. Rep. 7 2017 7584.Google Scholar
[8] We acknowledge funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme of the European Union (grant agreement No 715620).Google Scholar