Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T05:00:51.143Z Has data issue: false hasContentIssue false

CLSM and TIRF images from lignocellulosic materials: garlic skin and agave fibers study

Published online by Cambridge University Press:  30 July 2021

Josué Hernández-Varela
Affiliation:
Laboratorio de micro y nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico city, Mexico., Ciudad de mexico, Distrito Federal, Mexico
José Chanona-Pérez
Affiliation:
Laboratorio de micro y nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico city, Mexico., Mexico City, Distrito Federal, Mexico
Héctor Calderón Benavides
Affiliation:
Departamento de Física, Escuela Superior de Física y Matemática, Instituto Politécnico Nacional, Mexico city, Mexico, Distrito Federal, Mexico
Susana Gallegos Cerda
Affiliation:
Laboratorio de micro y nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico city, Mexico., Mexico, Distrito Federal, Mexico
Lizbeth Gonzalez Victoriano
Affiliation:
Laboratorio de micro y nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico city, Mexico., Distrito Federal, Mexico
María de Jesús Perea Flores
Affiliation:
Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Mexico city, Mexico, Distrito Federal, Mexico
Maximiliano Campos López
Affiliation:
Laboratorio de micro y nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico city, Mexico., Distrito Federal, Mexico
Liliana Edith Rojas Candelas
Affiliation:
IPN, Mexico, Distrito Federal, Mexico
Benjamín Arredondo Tamayo
Affiliation:
Laboratorio de micro y nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico city, Mexico., Distrito Federal, Mexico

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fluorescence techniques have been widely used by scientists to reveal valuable information from biological samples, but in food science, small progress is known due to the complexity of the samples. In this study, two different biological samples, garlic skin (GS) and agave fibers (AF), were used to evaluate the techniques of confocal laser scanning microscopy (CLSM) and total internal reflection fluorescence (TIRF) microscopy, to obtain valuable information on the fiber size of the samples. A compositional characterization with calcofluor white in CLSM was achieved, but a superficial characterization of the samples with TIRF was made, evidencing fiber sizes of 398.67 ± 48.47 nm and 677.38 ± 76.88 nm for GS and AF, respectively. This work reveals that only an untreated sample can be used with the two techniques in the same microscope. In addition, it is possible to characterize the sample only using a spatial field of research and which valuable information about the structure of the material is found. This work provides the opportunity to use advanced fluorescence techniques for elucidation of structures shortly before studied with these techniques.

Type
Frontiers in Fluorescence Lifetime and Super-resolution Imaging of Biological Structures and Dynamics
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Danial, J.S., Aguib, Y., Yacoub, M.H., Advanced fluorescence microscopy techniques for the life sciences, Glob. Cardiol. Sci. Pract. 2016 (2016). https://doi.org/10.21542/gcsp.2016.16.CrossRefGoogle Scholar
Tang, J., Ren, J., Han, K.Y., Fluorescence imaging with tailored light, Nanophotonics. (2019). https://doi.org/10.1515/nanoph-2019-0227.CrossRefGoogle Scholar
Onipe, O.O., Beswa, D., Jideani, A.I.O., Confocal laser scanning microscopy and image analysis for elucidating crumb and crust microstructure of bran-enriched South African fried dough and batter, Foods. 9 (2020) 122. https://doi.org/10.3390/foods9050605.CrossRefGoogle ScholarPubMed
Mattheyses, A.L., Simon, S.M., Rappoport, J.Z., Imaging with total internal reflection fluorescence microscopy for the cell biologist, J. Cell Sci. 123 (2010) 36213628. https://doi.org/10.1242/jcs.056218.CrossRefGoogle ScholarPubMed
Liesche, J., Ziomkiewicz, I., Schulz, A., Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells., BMC Plant Biol. 13 (2013) 226.CrossRefGoogle ScholarPubMed
Khater, I.M., Nabi, I.R., Hamarneh, G., A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods, Patterns. 1 (2020) 100038. https://doi.org/10.1016/j.patter.2020.100038.CrossRefGoogle ScholarPubMed
Huang, B., Jones, S.A., Brandenburg, B., Zhuang, X., Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution, Nat. Methods. 5 (2008) 10471052. https://doi.org/10.1038/nmeth.1274.CrossRefGoogle ScholarPubMed
Asbury, C.L., Data analysis for total internal reflection fluorescence microscopy, Cold Spring Harb. Protoc. 2016 (2016) 471473. https://doi.org/10.1101/pdb.prot085571.Google ScholarPubMed
Hernández-Varela, J.D., Chanona-Pérez, J.J., Calderón Benavides, H.A., Cervantes Sodi, F., Vicente-Flores, M., Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste, Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2020.117347.CrossRefGoogle Scholar