Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T01:51:26.567Z Has data issue: false hasContentIssue false

Characterizing the Two- and Three-Dimensional Resolution of an Improved Aberration-Corrected STEM

Published online by Cambridge University Press:  16 September 2009

A.R. Lupini*
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
A.Y. Borisevich
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
J.C. Idrobo
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
H.M. Christen
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
M. Biegalski
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
S.J. Pennycook
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
*
Corresponding author. E-mail: 9az@ornl.gov
Get access

Abstract

The successful development of third-order aberration correctors in transmission electron microscopy has seen aberration-corrected electron microscopes evolve from specialist projects, custom built at a small number of sites to common instruments in many modern laboratories. Here we describe some initial results illustrating the two- and three-dimensional (3D) performance of an aberration-corrected scanning transmission electron microscope with a prototype improved aberration corrector designed to also minimize fifth-order aberrations and a new, higher brightness gun. We show that atomic columns separated by 0.63 Å can be resolved and demonstrate detection of single dopant atoms with 3D sensitivity.

Type
Instrumentation and Software Development
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beck, V. (1979). Hexapole spherical-aberration corrector. Optik 53, 241245.Google Scholar
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006a). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Nat Acad Sci 103(9), 30443048.CrossRefGoogle ScholarPubMed
Borisevich, A.Y., Lupini, A.R., Travaglini, S. & Pennycook, S.J. (2006b). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Elec Micros 55(1), 712.CrossRefGoogle Scholar
Chisholm, M.F., Lupini, A.R., Pennycook, S.J., Ohkubo, I., Christen, H.M., Findlay, S.D., Oxley, M.P. & Allen, L.J. (2004). Simultaneous Z-contrast and phase contrast imaging of oxygen in ceramic interfaces. Microsc Microanal 10(Suppl 2), 256257.CrossRefGoogle Scholar
Crewe, A.V. & Kopf, D. (1980). A sextupole system for the correction of spherical aberration. Optik 55, 110.Google Scholar
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E. & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscopy. J Electr Microsc 50, 177185.Google ScholarPubMed
Einspahr, J.J. & Voyles, P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 1041.CrossRefGoogle ScholarPubMed
Haider, M., Müller, H., Uhlemann, S., Zach, J., Loebau, U. & Hoeschen, R. (2008). Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167178.CrossRefGoogle ScholarPubMed
Hartel, P., Müller, H., Uhlemann, S. & Haider, M. (2004). Residual aberrations of hexapole-type Cs-correctors. In Proceedings of the 13th European Microscopy Congress, Van Dyck, D. & Oostveldt, P. (Eds.), vol. I, pp. 4142. Antwerp: The Belgian Society for Microscopy.Google Scholar
Hawkes, P.W. & Kasper, E. (1996). Principles of Electron Optics. Vol. 2, pp. 857863. New York: Academic Press.CrossRefGoogle Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Kisielowski, C., Freitag, B., Bischoff, M., Van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., Van Der Stam, M., Von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miler, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.CrossRefGoogle Scholar
Koops, H. (1978). Aberration correction in electron microscopy. In Electron Microscopy, Sturgess, J.M. (Ed.), Vol. 3, pp. 185196. Toronto: Microscopical Society of Canada.Google Scholar
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008a). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N., Keyse, R.J., Murfitt, M.F., Own, C.S. & Szilagyi, Z.S. (2008b). Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. In Advances in Imaging and Electron Physics, Hawkes, P.W. (Ed.), Vol. 153, pp. 141. New York: Academic Press.Google Scholar
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-Å electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Lentzen, M. (2006). Progress in aberration-corrected hight-resolution transmission electron microscopy using hardware aberration correction. Microsc Microanal 12, 191205.CrossRefGoogle Scholar
Lupini, A.R. & Pennycook, S.J. (2003). Localization in elastic and inelastic scattering. Ultramicroscopy 96, 313322.CrossRefGoogle ScholarPubMed
Lupini, A.R. & Pennycook, S.J. (2008a). Aberration corrected imaging in the STEM. Microsc Microanal 13(Suppl. 2), 11461147.Google Scholar
Lupini, A.R. & Pennycook, S.J. (2008b). Rapid autotuning for crystalline specimens from an inline hologram. J Elec Micros 57, 195201.Google ScholarPubMed
Lupini, A.R., Rashkeev, S.N., Varela, M., Borisevich, A.Y., Oxley, M.P., Van Benthem, K., Peng, Y., De Jonge, N., Veith, G.M., Pantelides, S.T., Chisholm, M.F. & Pennycook, S.J. (2007). Scanning transmission electron microscopy. In Nanocharacterization, Kirkland, A.I. & Hutchison, J.L. (Eds.), pp. 2865. London: The Royal Society of Chemistry.CrossRefGoogle Scholar
Müller, H., Uhlemann, S., Hartel, P. & Haider, M. (2006). Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc Microanal 12, 443455.CrossRefGoogle ScholarPubMed
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.CrossRefGoogle Scholar
O'Keefe, M.A. & Allard, L.F. (2004). A standard for subÅngström metrology of resolution in aberration-corrected transmission electron microscopes. Microsc Microanal 10(Suppl. 2), 10021003.CrossRefGoogle Scholar
Peng, Y., Oxley, M.P., Lupini, A.R., Chisholm, M.F. & Pennycook, S.J. (2008). Spatial resolution and information transfer in scanning transmission electron microscopy. Microsc Microanal 14, 3647.CrossRefGoogle ScholarPubMed
Pennycook, S.J., Chisholm, M.F., Lupini, A.R., Varela, M., Van Benthem, K., Borisevich, A.Y., Oxley, M.P., Luo, W. & Pantelides, S.T. (2008). Materials applications of aberration-corrected STEM. In Advances in Imaging and Electron Physics, Hawkes, P.W. (Ed.), Vol. 153, pp. 141. New York: Academic Press.Google Scholar
Rose, H. (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Meth 187, 187199.CrossRefGoogle Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron-microscope. Optik 85, 1924.Google Scholar
Rose, H. (2003). Advances in electron optics. In High Resolution Imaging and Spectrometry of Materials, Ernst, F. & Rühle, M. (Eds.), pp. 189270. Berlin, New York: Springer.CrossRefGoogle Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Physik 101, 593603.CrossRefGoogle Scholar
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114132.Google Scholar
Shao, Z. (1988). On the fifth order aberration in a sextupole corrected probe forming system. Rev Sci Instrum 59, 24292437.CrossRefGoogle Scholar
Smith, D.J. (2008). Development of aberration-corrected electron microscopy. Microsc Microanal 14, 215.CrossRefGoogle ScholarPubMed
van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2006). Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 10621068.CrossRefGoogle ScholarPubMed
Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J. & Pennycook, S.J. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, 095502.CrossRefGoogle ScholarPubMed
Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E. & Pennycook, S.J. (2005). Materials characterization in the scanning transmission electron microscope. Ann Rev Mater Res 35, 539569.CrossRefGoogle Scholar
Voyles, P.M., Muller, D.A., Grazul, J., Citrin, P.H. & Gossmann, H.-J. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826829.CrossRefGoogle ScholarPubMed
Zach, J. & Haider, M. (1995). Correction of spherical and chromatic aberration in a low-voltage SEM. Optik 99, 112118.Google Scholar