Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-15T02:10:05.784Z Has data issue: false hasContentIssue false

Calibration of Piezoelectric Positioning Actuators Using a Reference Voltage-to-Displacement Transducer Based on Quartz Tuning Forks

Published online by Cambridge University Press:  21 March 2012

Andres Castellanos-Gomez
Affiliation:
Departamento de Física de la Materia Condensada (C–III). Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
Carlos R. Arroyo
Affiliation:
Departamento de Física de la Materia Condensada (C–III). Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
Nicolás Agraït
Affiliation:
Departamento de Física de la Materia Condensada (C–III). Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera”, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, Spain
Gabino Rubio-Bollinger*
Affiliation:
Departamento de Física de la Materia Condensada (C–III). Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera”, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
*
Corresponding author. E-mail: gabino.rubio@uam.es
Get access

Abstract

We use a piezoelectric quartz tuning fork to calibrate the displacement of ceramic piezoelectric scanners that are widely employed in scanning probe microscopy. We measure the static piezoelectric response of a quartz tuning fork and find it to be highly linear, nonhysteretic and with negligible creep. These performance characteristics, close to those of an ideal transducer, make quartz transducers superior to ceramic piezoelectric actuators. Furthermore, quartz actuators in the form of a tuning fork have the advantage of yielding static displacements comparable to those of local probe microscope scanners. We use the static displacement of a quartz tuning fork as a reference to calibrate the three axis displacement of a ceramic piezoelectric scanner. Although this calibration technique is a nontraceable method, it can be more versatile than using calibration grids because it enables characterization of the linear and nonlinear response of a piezoelectric scanner in a broad range of displacements, spanning from a fraction of a nanometer to hundreds of nanometers. In addition, the creep and the speed dependent piezoelectric response of ceramic scanners can be studied in detail.

Type
Techniques and Software Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alliata, D., Cecconi, C. & Nicolini, C. (1996). A simple method for preparing calibration standards for the three working axes of scanning probe microscope piezo scanners. Rev Sci Instrum 67(3), 748751.Google Scholar
Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscope. Phys Rev Lett 56(9), 930933.Google Scholar
Binnig, G. & Rohrer, H. (1982). Scanning tunneling microscopy. Helvetica Phys Acta 55(6), 726735.Google Scholar
Brodowsky, H.M., Boehnke, U.C. & Kremer, F. (1996). Wide range standard for scanning probe microscopy height calibration. Rev Sci Instrum 67(12), 41984200.Google Scholar
Castellanos-Gomez, A., Agrait, N. & Rubio-Bollinger, G. (2009). Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20(21), 215502.Google Scholar
Castellanos-Gomez, A., Agrait, N. & Rubio-Bollinger, G. (2010). Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors. Nanotechnology 21(14), 145702.CrossRefGoogle ScholarPubMed
Castellanos-Gomez, A., Agrait, N. & Rubio-Bollinger, G. (2011). Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. Ultramicroscopy 111(3), 186190.Google Scholar
Castellanos-Gomez, A., Smit, R.H.M., Agrait, N. & Rubio-Bollinger, G. (2012). Spatially resolved electronic inhomogeneities of graphene due to subsurface charges. Carbon 50(3), 932938.CrossRefGoogle Scholar
Giessibl, F.J. (1998). High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl Phys Lett 73(26), 39563958.CrossRefGoogle Scholar
Hayashi, T., Katase, Y., Ueda, K., Hoshino, T., Suzawa, H. & Kobayashi, M. (2008). Evaluation of tuning fork type force transducer for use as a transfer standard. Measurement 41(9), 941949.Google Scholar
Hihath, J. & Tao, N. (2008). Rapid measurement of single-molecule conductance. Nanotechnology 19, 265204.Google Scholar
Karrai, K. & Grober, R.D. (1995). Piezoelectric tip-sample distance control for near-field optical microscopes. Appl Phys Lett 66(14), 18421844.CrossRefGoogle Scholar
Liu, J., Callegari, A., Stark, M. & Chergui, M. (2008). A simple and accurate method for calibrating the oscillation amplitude of tuning-fork based AFM sensors. Ultramicroscopy 109(1), 8184.CrossRefGoogle ScholarPubMed
Pal, S. & Banerjee, S. (2000). A simple technique for height calibration for z piezo with Angstrom resolution of scanning probe microscopes. Rev Sci Instrum 71, 589590.Google Scholar
Qin, Y. & Reifenberger, R. (2007). Calibrating a tuning fork for use as a scanning probe microscope force sensor. Rev Sci Instrum 78, 063704.Google Scholar
Riis, E., Simonsen, H., Worm, T., Nielsen, U. & Besenbacher, F. (1989). Calibration of the electrical response of piezoelectric elements at low voltage using laser interferometry. Appl Phys Lett 54, 25302531.CrossRefGoogle Scholar
Rubio-Bollinger, G., Joyez, P. & Agrait, N. (2004). Metallic adhesion in atomic-size junctions. Phys Rev Lett 93(11), 116803.CrossRefGoogle ScholarPubMed
Simon, G.H., Heyde, M. & Rust, H.P. (2007). Recipes for cantilever parameter determination in dynamic force spectroscopy: Spring constant and amplitude. Nanotechnology 18, 255503.CrossRefGoogle Scholar
Smit, R., Grande, R., Lasanta, B., Riquelme, J., Rubio-Bollinger, G. & Agraït, N. (2007). A low temperature scanning tunneling microscope for electronic and force spectroscopy. Rev Sci Instrum 78, 113705.CrossRefGoogle ScholarPubMed
Van de Leemput, L.E.C., Rongen, P.H.H., Timmerman, B.H. & Van Kempen, H. (1991). Calibration and characterization of piezoelectric elements as used in scanning tunneling microscopy. Rev Sci Instrum 62, 989993.CrossRefGoogle Scholar
Vandervoort, K.G., Zasadzinski, R.K., Galicia, G.G. & Crabtree, G.W. (1993). Full temperature calibration from 4 to 300 K of the voltage response of piezoelectric tube scanner PZT 5A for use in scanning tunneling microscopes. Rev Sci Instrum 64, 896899.Google Scholar
Venkataraman, L., Klare, J., Tam, I., Nuckolls, C., Hybertsen, M. & Steigerwald, M. (2006). Single-molecule circuits with well-defined molecular conductance. Nano Lett 6(3), 458462.Google Scholar
Vieira, S. (1986). The behavior and calibration of some piezoelectric ceramics used in the STM. IBM J Res Devel 30(5), 553556.Google Scholar
Zech, M., Koop, H., Karrai, K., Schnurbusch, D., Holleitner, A. & Mueller, M. (2010). In situ characterization of exposed E-beam resist using novel AFM technique. Microsc Microanal 16(Suppl S2), 476477.Google Scholar