Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T06:19:18.677Z Has data issue: false hasContentIssue false

Automatic Crystallographic Characterization in a Transmission Electron Microscope: Applications to Twinning Induced Plasticity Steels and Al Thin Films

Published online by Cambridge University Press:  03 May 2013

M. Galceran*
Affiliation:
4MAT (Materials Engineering, Characterization, Synthesis and Recycling), Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium CIC Energigune, Albert Einstein 48, 01510 Miñano (Álava), Spain
A. Albou
Affiliation:
Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, IMAP, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
K. Renard
Affiliation:
Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, IMAP, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
M. Coulombier
Affiliation:
Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, IMAP, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
P.J. Jacques
Affiliation:
Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, IMAP, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
S. Godet
Affiliation:
4MAT (Materials Engineering, Characterization, Synthesis and Recycling), Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium
*
*Corresponding author. E-mail: mgalcera@ulb.ac.be
Get access

Abstract

A new automated crystallographic orientation mapping tool in a transmission electron microscope technique, which is based on pattern matching between every acquired electron diffraction pattern and precalculated templates, has been used for the microstructural characterization of nondeformed and deformed aluminum thin films and twinning-induced plasticity steels. The increased spatial resolution and the use of electron diffraction patterns rather than Kikuchi lines make this tool very appropriate to characterize fine grained and deformed microstructures.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albou, A., Galceran, M., Renard, K., Godet, S. & Jacques, P.J. (2013). Nanoscale characterization of the evolution of the twin–matrix orientation in Fe–Mn–C twinning-induced plasticity steel by means of transmission electron microscopy orientation mapping. Scripta Mater 68, 400403.CrossRefGoogle Scholar
Allain, S., Chateau, J.P. & Bouaziz, O. (2004). A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel. Mater Sci Eng A 387389, 143147.CrossRefGoogle Scholar
Brugger, C., Coulobier, M., Massart, T.J., Raskin, J.P. & Pardoen, T. (2010). Strain gradient plasticity analysis of the strength and ductility of thin metallic films using an enriched interface model. Acta Mater 58, 49404949.CrossRefGoogle Scholar
Coulombier, M., Boé, A., Brugger, C., Raskin, J.P. & Pardoen, T. (2010). Imperfection-sensitive ductility of aluminium thin films. Scripta Mater 62, 742745.CrossRefGoogle Scholar
Delannay, L., Mishin, O.V., Juul Jensen, D. & Van Houtte, P. (2001). Quantitative analysis of grain subdivision in cold rolled aluminium. Acta Mater 49, 24412451.CrossRefGoogle Scholar
Evans, A.G. & Hutchinson, J.W. (2008). The thermomechanical integrity of thin films and multilayers. Acta Mater 43, 25072530.CrossRefGoogle Scholar
Godet, S., Glez, J.C., He, Y., Jonas, J.J. & Jacques, P.J. (2004). Grain-scale characterization of transformation textures. J Appl Crystallogr 37, 417425.CrossRefGoogle Scholar
Gourgues-Lorenzon, A.F. (2009). Application of electron backscatter diffraction to the study of phase transformations: Present and possible future. J Microsc 233, 460473.CrossRefGoogle Scholar
Grassel, O., Krüger, L., Frommeyer, G. & Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast 16, 13911409.CrossRefGoogle Scholar
Gravier, S., Coulombier, M., Safi, A., André, N., Boé, A., Raskin, J.P. & Pardoen, T. (2009). New MEMS-based micromechanical testing laboratory—Application to aluminium, polysilicon and silicon nitride. J Microelectromech Syst 18, 555565.CrossRefGoogle Scholar
Humphreys, F.J., Huang, Y., Brough, I. & Harries, C. (1999). Electron backscatter diffraction of grain and subgrain structures—Resolution considerations. J Microsc 195, 212216.CrossRefGoogle ScholarPubMed
Idrissi, H., Renard, K., Ryelandt, L., Schryvers, D. & Jacques, P.J. (2010a). On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Mater 58, 24642476.CrossRefGoogle Scholar
Idrissi, H., Ryelandt, L., Schreyvers, D. & Jacques, P.J. (2010b). On the relationship between the twin internal structure and the work-hardening rate of TWIP steels. Scripta Mater 63, 961964.CrossRefGoogle Scholar
Lambert-Perlade, A., Gourgues, A.F. & Pineau, A. (2004). Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel. Acta Mater 52, 23372348.CrossRefGoogle Scholar
Marteleur, M., Sun, F., Gloriant, T., Vermaut, P., Jacques, P.J. & Prima, F. (2012). On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater 66, 749752.CrossRefGoogle Scholar
Mizera, J. & Driver, J.H. (1999). Microtexture analysis of a hot deformed Al-2.3wt.%Li-0.1wt.%Zr alloy. Mater Sci Eng A 271, 334343.CrossRefGoogle Scholar
Randle, V. (1999). Menchanism of twining-induced grain boundary engineering in low stacking fault energy materials. Acta Mater 47, 41874196.CrossRefGoogle Scholar
Randle, V. & Owen, G. (2006). Mechanism of grain boundary engineering. Acta Mater 54, 17771783.CrossRefGoogle Scholar
Rauch, E.F. & Veron, M. (2005). Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a TEM. J Mater Sci Eng Tech 36, 552556.Google Scholar
Rauch, E.F., Veron, M., Portillo, J., Bultreys, D., Maniette, Y. & Nicolopoulos, S. (2008). Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc Anal 22, S5S8.Google Scholar
Spearing, S.M. (2000). Materials issues in microelectromechanical systems (MEMS). Acta Mater 48, 179196.CrossRefGoogle Scholar
Vincent, R. & Midgley, P. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271282.CrossRefGoogle Scholar