We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Type
Advances in Microscopy for Quantum Information Sciences - EELS
Das, S. et al. . Observation of room-temperature polar skyrmions. Nature568, 368–372 (2019).10.1038/s41586-019-1092-8CrossRefGoogle ScholarPubMed
2
Yadav, A. K. et al. . Observation of polar vortices in oxide superlattices. Nature530, 198–201 (2016).10.1038/nature16463CrossRefGoogle ScholarPubMed
3
Shafer, P. et al. . Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl. Acad. Sci.115, 915–920 (2018).10.1073/pnas.1711652115CrossRefGoogle ScholarPubMed
4
Yadav, A. K. et al. . Spatially resolved steady-state negative capacitance. Nature565, 468–471 (2019).10.1038/s41586-018-0855-yCrossRefGoogle ScholarPubMed
5
Li, Q. et al. . Quantification of flexoelectricity in PbTiO 3/SrTiO 3 superlattice polar vortices using machine learning and phase-field modeling. Nat. Commun. 8, 1–8 (2017).Google Scholar
6
Muller, D. A. et al. . Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy. Science, 319, 1073 LP – 1076 (2008).10.1126/science.1148820CrossRefGoogle ScholarPubMed
7
Torres-Pardo, A. et al. . Spectroscopic mapping of local structural distortions in ferroelectric PbTiO 3/SrTiO 3 superlattices at the unit-cell scale. Phys. Rev. B84, 220102 (2011).10.1103/PhysRevB.84.220102CrossRefGoogle Scholar