Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-07T13:49:20.828Z Has data issue: false hasContentIssue false

Atom Probe Microscopy of Strengthening Effects in Alloy 718

Published online by Cambridge University Press:  04 February 2019

Felix Theska
Affiliation:
School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
Simon Peter Ringer
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Australia
Sophie Primig*
Affiliation:
School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
*
*Author for correspondence: Sophie Primig, E-mail: s.primig@unsw.edu.au
Get access

Abstract

Polycrystalline Ni-based superalloys for aerospace and power generation applications are often precipitation hardened to achieve strengthening at elevated temperatures. Here, atom probe microscopy has become an essential tool to study the complex morphology of nanoscale precipitates. This study focuses on Alloy 718, which is hardened by semi-coherent, ordered γ′ (Ni3(Al, Ti)) and γ″ (Ni3(Nb)) particles. According to previous research, these particles often occur as duplets or triplets with a stacking sequence dependent on prior processing. This creates various interfaces with a strong impact on the mechanical properties, highlighting the importance of quantitative studies which are challenging with electron microscopy. We present atom probe data reconstruction and analysis approaches particularly suited for precipitation hardened superalloys. While voltage atom probe allows for an accurate reconstruction, the acquired data volume is often limited. Laser-assisted atom probe provides statistically significant data, but the loss of crystallographic information requires correlation with voltage-mode datasets. We further describe an advanced iso-surface method where initially arbitrarily chosen concentration thresholds of Al + Ti for γ′ and Nb for γ″ particles are optimized. Recognizing the importance of the precipitate stacking order, the different types of precipitate interfaces are quantified, and these methods may be applicable to other engineering alloys.

Type
Materials Science: Metals
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, T, Chaturvedi, M, Ringer, SP & Cairney, JM (2010). Precipitation and clustering in the early stages of ageing in Inconel 718. Mater Sci Eng A 527, 77707774. http://linkinghub.elsevier.com/retrieve/pii/S0921509310009214Google Scholar
Araullo-Peters, VJ, Breen, A, Ceguerra, AV, Gault, B, Ringer, SP & Cairney, JM (2015). A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 714. http://linkinghub.elsevier.com/retrieve/pii/S0304399115000248Google Scholar
Arslan, I, Marquis, EA, Homer, M, Hekmaty, MA & Bartelt, NC (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.Google Scholar
Bagot, PAJ, Silk, OBW, Douglas, JO, Pedrazzini, S, Crudden, DJ, Martin, TL, Hardy, MC, Moody, MP & Reed, RC (2017). An atom probe tomography study of site preference and partitioning in a nickel-based superalloy. Acta Mater 125, 156165. http://dx.doi.org/10.1016/j.actamat.2016.11.053Google Scholar
Blavette, D, Cadel, E & Deconihout, B (2000). The role of the atom probe in the study of nickel-based superalloys. Mater Charact 44, 133157.Google Scholar
Breen, AJ, Babinsky, K, Day, AC, Eder, K, Oakman, CJ, Trimby, PW, Primig, S, Cairney, JM & Ringer, SP (2017). Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc Microanal 23, 279290. https://www.cambridge.org/core/product/identifier/S1431927616012605/type/journal_articleGoogle Scholar
Breen, AJ, Moody, MP, Ceguerra, AV, Gault, B, Araullo-Peters, VJ & Ringer, SP (2015). Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy 159, 314323.Google Scholar
Cairney, JM, Rajan, K, Haley, D, Gault, B, Bagot, PAJ, Choi, P-P, Felfer, PJ, Ringer, SP, Marceau, RKW & Moody, MP (2015). Mining information from atom probe data. Ultramicroscopy 159, 324337. http://linkinghub.elsevier.com/retrieve/pii/S0304399115001114Google Scholar
Campbell, FC (2006). Superalloys. In Manufacturing Technology for Aerospace Structural Materials, pp. 211272. Elsevier. http://linkinghub.elsevier.com/retrieve/pii/B9781856174954500068.Google Scholar
Cao, W-D & Kennedy, R (2004). Role of chemistry in 718-type alloys—Allvac® 718Plus™ alloy development. Superalloys 3, 9199.Google Scholar
Cozar, R & Pineau, A (1973). Morphology of y′ and y″ precipitates and thermal stability of Inconel 718 type alloys. Metall Trans 4, 4759. http://link.springer.com/10.1007/BF02649604Google Scholar
De Geuser, F & Gault, B (2016). Reflections on the projection of ions in atom probe tomography. Microsc Microanal 19. http://arxiv.org/abs/1606.08064Google Scholar
Detor, AJ, DiDomizio, R, Sharghi-Moshtaghin, R, Zhou, N, Shi, R, Wang, Y, McAllister, DP & Mills, MJ (2018). Enabling large superalloy parts using compact coprecipitation of γ′ and γ″. Metall Mater Trans A 49A, 708717.Google Scholar
Devaraj, A, Kaspar, TC, Ramanan, S, Walvekar, S, Bowden, ME, Shutthanandan, V & Kurtz, RJ (2014). Nanoscale phase separation in epitaxial Cr–Mo and Cr–V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation. J Appl Phys 116, 193512. http://aip.scitation.org/doi/10.1063/1.4901465Google Scholar
Diercks, DR, Gorman, BP & Mulders, JJL (2017). Electron beam-induced deposition for atom probe tomography specimen capping layers. Microsc Microanal 23, 321328.Google Scholar
Dongmo, P., Hartshorne, M., Cristiani, T., Jablonski, M. L., Bomberger, C., Isheim, D., Seidman, D. N., Taheri, M. L. & Zide, J. (2014). Observation of self-assembled core–shell structures in epitaxially embedded TbErAs nanoparticles. Small 10, 49204925. http://doi.wiley.com/10.1002/smll.201400891Google Scholar
Drexler, A., Oberwinkler, B., Primig, S., Turk, C., Povoden-Karadeniz, E., Heinemann, A., Ecker, W. & Stockinger, M. (2018). Experimental and numerical investigations of the γ″ and γ′ precipitation kinetics in Alloy 718. Mater Sci Eng A 723, 314323. http://linkinghub.elsevier.com/retrieve/pii/S0921509318303496Google Scholar
Fayman, YC (1987). Microstructural characterization and elemental partitioning in a direct-aged superalloy (DA 718). Mater Sci Eng 92, 159171.Google Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012a). Atom Probe Microscopy. New York, NY: Springer New York http://link.springer.com/10.1007/978-1-4614-3436-8Google Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012b). Atom probe crystallography. Mater Today 15, 378386. http://linkinghub.elsevier.com/retrieve/pii/S1369702112701645Google Scholar
Gault, B, Müller, M, La Fontaine, A, Moody, MP, Shariq, A, Cerezo, A, Ringer, SP & Smith, GDW (2010). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108, 044904.Google Scholar
Geng, WT, Ping, DH, Gu, YF, Cui, CY & Harada, H (2007). Stability of nanoscale co-precipitates in a superalloy: A combined first-principles and atom probe tomography study. Phys Rev B - Condensed Matter Mater Phys 76, 110.Google Scholar
Han, Y, Deb, P & Chaturvedi, MC (1982). Coarsening behaviour of γ″- and γ′-particles in Inconel alloy 718. Met Sci 16, 555562. http://www.maneyonline.com/doi/abs/10.1179/030634582790427118%5Cnhttp://www.maneyonline.com/doi/pdfplus/10.1179/030634582790427118Google Scholar
Hellman, O, Vandenbroucke, J, Blatz Du Rivage, J & Seidman, DN (2002). Application software for data analysis for three-dimensional atom probe microscopy. Mater Sci Eng A 327, 2933.Google Scholar
Hellman, OC, Vandenbroucke, JA, Rüsing, J, Isheim, D & Seidman, DN (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6, 437444.Google Scholar
Hornbuckle, BC, Kapoor, M & Thompson, GB (2015). A procedure to create isoconcentration surfaces in low-chemical-partitioning, high-solute alloys. Ultramicroscopy 159, 346353.Google Scholar
Jiang, S, Wang, H, Wu, Y, Liu, X, Chen, H, Yao, M, Gault, B, Ponge, D, Raabe, D, Hirata, A, Chen, M, Wang, Y & Lu, Z (2017). Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460464. http://www.nature.com/doifinder/10.1038/nature22032Google Scholar
Jiao, ZB, Luan, JH, Guo, W, Poplawsky, JD & Liu, CT (2017). Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel. Mater Res Lett 5, 562568. https://www.tandfonline.com/doi/full/10.1080/21663831.2017.1364675Google Scholar
Krueger, DD (1989). The development of direct age 718 for gas turbine engine disk applications. In Superalloys 718 Metallurgy and Applications (1989), pp. 279296. TMS http://www.tms.org/Superalloys/10.7449/1989/Superalloys_1989_279_296.pdfGoogle Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247. http://dx.doi.org/10.1016/j.cossms.2013.09.002Google Scholar
Marceau, RKW, Ceguerra, AV, Breen, AJ, Raabe, D & Ringer, SP (2015). Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al. Ultramicroscopy 157, 1220.Google Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R: Reports R69, 3762.Google Scholar
McAllister, D, Lv, D, Deutchman, H, Peterson, B, Wang, Y & Mills, MJ (2016). Characterization and modeling of deformation mechanisms in Ni-base superalloy 718. In Superalloys, 821829. Hoboken, NJ, USA.Google Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic.Google Scholar
Miller, MK (2001). Contributions of atom probe tomography to the understanding of nickel-based superalloys. Micron 32, 757764. http://linkinghub.elsevier.com/retrieve/pii/S0968432800000834Google Scholar
Miller, MK, Babu, SS & Burke, MG (1999). Intragranular precipitation in alloy 718. Mater Sci Eng: A 270, 1418. http://linkinghub.elsevier.com/retrieve/pii/S092150939900235XGoogle Scholar
Miller, MK & Forbes, RG (2014). Atom-probe tomography: The local electrode atom probe Boston, MA: Springer US. http://link.springer.com/10.1007/978-1-4899-7430-3.Google Scholar
Moody, MP, Gault, B, Stephenson, LT, Haley, D & Ringer, SP (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815824.Google Scholar
Moody, MP, Stephenson, LT, Ceguerra, AV & Ringer, SP (2008). Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Technol 71, 542550. http://doi.wiley.com/10.1002/jemt.20582Google Scholar
Oberwinkler, B, Fischersworring-Bunk, A, Huller, M & Stockinger, M (2016). Integrated Process Modeling for the Mechanical Properties Optimization of Superalloys 2016: 13th International Symposium 513–522.Google Scholar
Oblak, JM, Paulonis, DF & Duvall, DS (1974). Coherency strengthening in Ni base alloys hardened by DO22 Gamma Double Prime precipitates. Metallurgical Trans 5, 143153.Google Scholar
Pollock, TM & Tin, S (2006). Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J Propul Power 22, 361374. http://arc.aiaa.org/doi/10.2514/1.18239Google Scholar
Reed, RC (2006). The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press.Google Scholar
Schneider, CA, Rasband, WS & Eliceiri, KW (2012). NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675. http://www.nature.com/articles/nmeth.2089Google Scholar
Sha, G & Ringer, SP (2009). Effect of laser pulsing on the composition measurement of an Al–Mg–Si–Cu alloy using three-dimensional atom probe. Ultramicroscopy 109, 580584.Google Scholar
Slama, C & Abdellaoui, M (2000). Structural characterization of the aged Inconel 718. J Alloys Compd 306, 277284. http://linkinghub.elsevier.com/retrieve/pii/S0925838800007891Google Scholar
Snedecor, GWA & Cochran, WGA (1989). Statistical Methods. 8th ed. Iowa State University Press https://books.google.com.au/books?id=dpREAAAAIAAJ.Google Scholar
Strondl, A, Fischer, R, Frommeyer, G & Schneider, A (2008). Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting. Mater Sci Eng: A 480, 138147. http://linkinghub.elsevier.com/retrieve/pii/S0921509307013949Google Scholar
Theska, F, Stanojevic, A, Oberwinkler, B, Ringer, SP & Primig, S (2018). On conventional versus direct ageing of Alloy 718. Acta Mater 156, 116124. https://linkinghub.elsevier.com/retrieve/pii/S1359645418305020Google Scholar
Viskari, L & Stiller, K (2011). Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718. Ultramicroscopy 111, 652658.Google Scholar
Vurpillot, F, Bostel, A & Blavette, D (1999). The shape of field emitters and the ion trajectories in three- dimensional atom probes. J Microsc 196, 332336.Google Scholar
Wallace, ND, Ceguerra, AV, Breen, AJ & Ringer, SP (2018). On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space. Ultramicroscopy 189, 6575.Google Scholar
Whitmore, L, Leitner, H, Povoden-Karadeniz, E, Radis, R & Stockinger, M (2012). Transmission electron microscopy of single and double aged 718Plus superalloy. Mater Sci Eng: A 534, 413423. http://linkinghub.elsevier.com/retrieve/pii/S0921509311013281Google Scholar
Zickler, GA, Schnitzer, R, Radis, R, Hochfellner, R, Schweins, R, Stockinger, M & Leitner, H (2009). Microstructure and mechanical properties of the superalloy ATI Allvac® 718Plus™. Mater Sci Eng: A 523, 295303. http://linkinghub.elsevier.com/retrieve/pii/S0921509309006534Google Scholar