Skip to main content Accessibility help
Hostname: page-component-544b6db54f-mdtzd Total loading time: 0.421 Render date: 2021-10-17T23:36:17.270Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

XRMA and ToF-SIMS Analysis of Normal and Hypomineralized Enamel

Published online by Cambridge University Press:  12 February 2015

Lisa Melin
Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P.O. Box 450, SE 405 30 Gothenburg, Sweden
Jesper Lundgren
Department of Psychology, University of Gothenburg, P.O. Box 500, SE 405 30 Gothenburg, Sweden
Per Malmberg
Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
Jörgen G. Norén*
Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P.O. Box 450, SE 405 30 Gothenburg, Sweden
Fabian Taube
Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, P.O. Box 414, SE 405 30 Gothenburg, Sweden
David H. Cornell
Department of Earth Sciences, University of Gothenburg, P.O. Box 460, SE 405 30 Gothenburg, Sweden
* Corresponding author.


Molar incisor hypomineralization (MIH) is a developmental disturbance of the enamel. This study presents analyses of hypomineralized and normal enamel in first molar teeth diagnosed with MIH, utilizing time-of-flight secondary ion mass spectrometry area analyses and X-ray microanalysis of area and spot profiles in uncoated samples between gold lines which provide electrical conductivity. Statistical analysis of mean values allows discrimination of normal from MIH enamel, which has higher Mg and lower Na and P. Inductive analysis using complete data sets for profiles from the enamel surface to the enamel–dentin junction found that Mg, Cl and position in the profile provide useful discrimination criteria. Element profiles provide a visual complement to the inductive analysis and several elements also provide insight into the development of both normal and MIH enamel. The higher Mg content and different Cl profiles of hypomineralized enamel compared with normal enamel are probably related to a relatively short period during the development of ameloblasts between birth and the 1st year of life.

Biological Applications
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alaluusua, S. (2010). Aetiology of molar-incisor hypomineralization: A systematic review. Eur Arch Paediatr Dent 11, 5358.CrossRefGoogle ScholarPubMed
Bronckers, A., Kalogeraki, L., Jorna, H.J., Wilke, M., Bervoets, T.J., Lyaruu, D.M., Zandieh-Doulabi, B., Denbesten, P. & de Jonge, H. (2010). The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone 46, 11881196.CrossRefGoogle ScholarPubMed
Chan, Y.L., Ngan, A.H. & King, N.M. (2010). Degraded prism sheaths in the transition region of hypomineralized teeth. J Dent 383, 237244.CrossRefGoogle Scholar
Chang, E.H., Lacruz, R.S., Bromage, T.G., Bringas, P. Jr., Welsh, M.J., Zabner, J. & Paine, M.L. (2011). Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs 194, 249254.CrossRefGoogle Scholar
Crombie, F., Manton, D. & Kilpatrick, N. (2009). Aetiology of molar-incisor hypomineralization: A critical review. Int J Paediatr Dent 19, 7383.CrossRefGoogle ScholarPubMed
Crombie, F.A., Manton, D.J., Palamara, J.E., Zalizniak, I., Cochrane, N.J. & Reynolds, E.C. (2013). Characterisation of developmentally hypomineralized human enamel. J Dent 41, 611618.CrossRefGoogle Scholar
da Costa-Silva, C.M., Ambrosano, G.M., Jeremias, F., De Souza, J.F. & Mialhe, F.L. (2011). Increase in severity of molar-incisor hypomineralization and its relationship with the colour of enamel opacity: A prospective cohort study. Int J Paediatr Dent 21, 333341.CrossRefGoogle ScholarPubMed
Driessens, F.C. & Verbeeck, R.M. (1985). Dolomite as a possible magnesium-containing phase in human tooth enamel. Calcif Tissue Int 37, 376380.CrossRefGoogle ScholarPubMed
Driessens, F.C. & Verbeeck, R.M.H. (1982). The probable phase composition of the mineral in sound enamel and dentine. Bull Soc Chim Belg 91, 573596.CrossRefGoogle Scholar
Dykes, E. & Elliott, J.C. (1971). The occurrence of chloride ions in the apatite lattice of Holly Springs hydroxyapatite and dental enamel. Calcif Tissue Res 7, 241248.CrossRefGoogle ScholarPubMed
Elfrink, M.E., ten Cate, J.M., Jaddoe, V.W., Hofman, A., Moll, H.A. & Veerkamp, J.S. (2012). Deciduous molar hypomineralization and molar incisor hypomineralization. J Dent Res 91, 551555.CrossRefGoogle ScholarPubMed
Elliot, J.C. (1977). Structure, crystal chemistry and density of enamel apatites. Ciba Found Symp 205, 5472.Google Scholar
Fagrell, T. (2011). Molar incisor hypomineralization. Morphological and chemical aspects, onset and possible etiological factors. Swed Dent J Suppl 5, 1183.Google Scholar
Fagrell, T.G., Dietz, W., Jälevik, B. & Norén, J.G. (2010). Chemical, mechanical and morphological properties of hypomineralized enamel of permanent first molars. Acta Odontol Scand 68, 215222.CrossRefGoogle ScholarPubMed
Fagrell, T.G., Salmon, P., Melin, L. & Norén, J.G. (2013). Onset of molar incisor hypomineralization (MIH). Morphological and chemical aspects, onset and possible etiological factors. Swed Dent J 37, 6170.Google Scholar
Farah, R.A., Monk, B.C., Swain, M.V. & Drummond, B.K. (2010a). Protein content of molar-incisor hypomineralization enamel. J Dent 38, 591596.CrossRefGoogle Scholar
Farah, R.A., Swain, M.V., Drummond, B.K., Cook, R. & Atieh, M. (2010b). Mineral density of hypomineralized enamel. J Dent 38, 5058.CrossRefGoogle Scholar
FDI (1992). A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J 42, 411426.Google Scholar
Fearne, J., Anderson, P. & Davis, G.R. (2004). 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralization. Br Dent J 196, 634638.CrossRefGoogle Scholar
Ferrazzano, G.F., Sangianantoni, G., Cantile, T., Amato, I., Orlando, S. & Ingenito, A. (2012). Dental enamel defects in Italian children with cystic fibrosis: An observational study. Community Dent Health 29, 106109.Google ScholarPubMed
Garnett, J. & Dieppe, P. (1990). The effects of serum and human albumin on calcium hydroxyapatite crystal growth. Biochem J 266, 863868.Google ScholarPubMed
Gómez-García, I., Oyenarte, I. & Martínez-Cruz, L.A. (2011). Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Acta Crystallograph Sect F Struct Biol Cryst Commun 67, 349353.CrossRefGoogle ScholarPubMed
Gómez-García, I., Stuiver, M., Ereño, J., Oyenarte, I., Corral-Rodríguez, M.A., Müller, D. & Martínez-Cruz, L.A. (2012). Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallograph Sect F Struct Biol Cryst Commun 68, 11981203.CrossRefGoogle Scholar
Gotierrez-Salazar, M.P. & Reyes-Gasga, J. (2003). Microhardness and chemical composition of human tooth. Mat Res 6, 367373.CrossRefGoogle Scholar
Hu, J.C., Chun, Y.H., Al Hazzazzi, T. & Simmer, J.P. (2007). Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 186, 7885.CrossRefGoogle ScholarPubMed
Jälevik, B. (2010). Prevalence and diagnosis of molar-incisor-hypomineralization (MIH): A systematic review. Eur Arch Paediatr Dent 11, 5964.CrossRefGoogle ScholarPubMed
Jälevik, B. & Klingberg, G.A. (2002). Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent 12, 2432.Google ScholarPubMed
Jälevik, B. & Norén, J.G. (2000). Enamel hypomineralization of permanent first molars: A morphological study and survey of possible aetiological factors. Int J Paediatr Dent 10, 278289.CrossRefGoogle ScholarPubMed
Jälevik, B., Norén, J.G., Klingberg, G. & Barregård, L. (2001a). Etiologic factors influencing the prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Eur J Oral Sci 109, 230234.CrossRefGoogle Scholar
Jälevik, B., Odelius, H., Dietz, W. & Norén, J. (2001b). Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch Oral Biol 46, 239247.CrossRefGoogle Scholar
Jedeon, K., De la Dure-Molla, M., Brookes, S.J., Loiodice, S., Marciano, C., Kirkham, J., Canivenc-Lavier, M.C., Boudalia, S., Bergès, R., Harada, H., Berdal, A. & Babajko, S. (2013). Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol 183, 108118.CrossRefGoogle ScholarPubMed
Jeremias, F., Koruyucu, M., Küchler, E.C., Bayram, M., Tuna, E.B., Deeley, K., Pierri, R.A., Souza, J.F., Fragelli, C.M., Paschoal, M.A., Gencay, K., Seymen, F., Caminaga, R.M., dos Santos-Pinto, L. & Vieira, A.R. (2013). Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol 58, 14341442.CrossRefGoogle ScholarPubMed
Josephsen, K., Takano, Y., Frische, S., Praetorius, J., Nielsen, S., Aoba, T. & Fejerskov, O. (2010). Ion transporters in secretory and cyclically modulating ameloblasts: A new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol 299, C1299C1307.CrossRefGoogle ScholarPubMed
Koch, G., Thesleff, I. & Kreiborg, S. (2009). Tooth development and disturbances in number and shape of teeth. In Pediatric Dentistry—A Clinical Approach, Koch, G. & Poulsen, S. (Eds.), 2nd ed. United Kingdom: Wiley-Blackwell, 183196.Google Scholar
Lacruz, R.S., Nanci, A., Kurtz, I., Wright, J.T. & Paine, M.L. (2010). Regulation of pH during amelogenesis. Calcif Tissue Int 86, 91103.CrossRefGoogle ScholarPubMed
Lacruz, R.S., Smith, C.E., Moffatt, P., Chang, E.H., Bromage, T.G., Bringas, P. Jr., Nanci, A., Baniwal, S.K., Zabner, J., Welsh, M.J., Kurtz, I. & Paine, M.L. (2012). Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol 227, 17761785.CrossRefGoogle ScholarPubMed
LeGeros, R.Z., Kijkowska, R., Bautista, C. & LeGeros, J.P. (1995). Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. Connect Tissue Res 33, 203209.CrossRefGoogle ScholarPubMed
LeGeros, R.Z., Sakae, T., Bautista, C., Retino, M. & LeGeros, J.P. (1996). Magnesium and carbonate in enamel and synthetic apatites. Adv Dent Res 10, 225231.CrossRefGoogle ScholarPubMed
Lou, L., Nelson, A.E., Heo, G. & Major, P.W. (2008). Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS). Appl Surf Sci 254, 67066709.CrossRefGoogle Scholar
Mahoney, E., Ismail, F.S., Kilpatrick, N. & Swain, M. (2004a). Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur J Oral Sci 112, 497502.CrossRefGoogle Scholar
Mahoney, E.K., Rohanizadeh, R., Ismail, F.S., Kilpatrick, N.M. & Swain, M.V. (2004b). Mechanical properties and microstructure of hypomineralized enamel of permanent teeth. Biomaterials 25, 50915100.CrossRefGoogle Scholar
Malmberg, P., Bexell, U., Eriksson, C., Nygren, H. & Richter, K. (2007). Analysis of bone minerals by time-of-flight secondary ion mass spectrometry: A comparative study using monoatomic and cluster ions sources. Rapid Commun Mass Spectrom 21, 745749.CrossRefGoogle ScholarPubMed
Mangum, J.E., Crombie, F.A., Kilpatrick, N., Manton, D.J. & Hubbard, M.J. (2010). Surface integrity governs the proteome of hypomineralized enamel. J Dent Res 89, 11601165.CrossRefGoogle ScholarPubMed
Mayer, I., Schlam, R. & Featherstone, J.D. (1997). Magnesium-containing carbonate apatites. J Inorg Biochem 66, 16.CrossRefGoogle ScholarPubMed
Melin, L., Norén, J.G., Taube, F. & Cornell, D.H. (2014). Evaluation of X-ray microanalysis for characterization of dental enamel. Microsc Microanal 20, 257267.CrossRefGoogle ScholarPubMed
Menanteau, J., Gregoire, M., Daculsi, G. & Jans, I. (1987). In vitro albumin binding on apatite crystals from developing enamel. Bone Miner 3, 137141.Google ScholarPubMed
Nanci, A. ([2007] 2008). Ten Cate’s Oral Histology: Development, Structure, and Function, 7th ed. St. Louis, MO: Mosby Inc., and affiliate of Elsevier Inc.Google Scholar
Nelson, A.E., Hildebrand, N.K.S. & Major, P.W. (2002). Mature Dental Enamel [Calcium Hydroxyapatite, Ca10(PO4)6(OH)2] by XPS. Surf Sci Spectra 9, 250259.CrossRefGoogle Scholar
Nilsson, T., Lundgren, T., Odelius, H., Jönsson, U., Sillén, R. & Norén, J.G. (1998). Differences in co-variation of inorganic elements in the bulk and surface of human deciduous enamel: An induction analysis study. Connect Tissue Res 38, 8189.CrossRefGoogle ScholarPubMed
Parry, D.A., Mighell, A.J., El-Sayed, W., Shore, R.C., Jalili, I.K., Dollfus, H., Bloch-Zupan, A., Carlos, R., Carr, I.M., Downey, L.M., Blain, K.M., Mansfield, D.C., Shahrabi, M., Heidari, M., Aref, P., Abbasi, M., Michaelides, M., Moore, A.T., Kirkham, J. & Inglehearn, C.F. (2009). Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet 84, 266273.CrossRefGoogle ScholarPubMed
Polok, B., Escher, P., Ambresin, A., Chouery, E., Bolay, S., Meunier, I., Nan, F., Hamel, C., Munier, F.L., Thilo, B., Mégarbané, A. & Schorderet, D.F. (2009). Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am J Hum Genet 84, 259265.CrossRefGoogle ScholarPubMed
Posner, A.S. (1996). The effect of fluoride on bone mineralization. In Fluoride in Dentistry, Fejerskov O., Ekstrand J. & Burt B.A. (Eds.), pp. 8895. Copenhagen: Munksgaard.Google Scholar
Poulsen, S., Gjørup, H., Haubek, D., Haukali, G., Hintze, H., Løvschall, H. & Errboe, M. (2008). Amelogenesis imperfecta—A systematic literature review of associated dental and oro-facial abnormalities and their impact on patients. Acta Odontol Scand 66, 193199.CrossRefGoogle Scholar
Retief, D.H., Cleaton-Jones, P.E. & Turkstra, J. (1970). The quantitative determination of Ca, Na, Al, Mg, and Cl in normal enamel and dentin by neutron activation and high resolution gamma spectrometry. J Dent Assoc S Afr 25, 188192.Google ScholarPubMed
Retief, D.H., Cleaton-Jones, P.E., Turkstra, J. & De Wet, W.J. (1971). The quantitative analysis of sixteen elements in normal human enamel and dentine by neutron activation analysis and high-resolution gamma-spectrometry. Arch Oral Biol 16, 12571267.CrossRefGoogle ScholarPubMed
Robinson, C., Hallsworth, A.S. & Kirkham, J. (1984). Distribution and uptake of magnesium by developing deciduous bovine incisor enamel. Arch Oral Biol 29, 479482.CrossRefGoogle ScholarPubMed
Robinson, C., Kirkham, J., Brookes, S.J., Bonass, W.A. & Shore, R.C. (1995). The chemistry of enamel development. Int J Dev Biol 39, 145152.Google ScholarPubMed
Robinson, C., Kirkham, J., Brookes, S.J. & Shore, R.C. (1992). The role of albumin in developing rodent dental enamel: A possible explanation for white spot hypoplasia. J Dent Res 71, 12701274.CrossRefGoogle ScholarPubMed
Robinson, C., Weatherell, J.A. & Hallsworth, A.S. (1981). Distribution of magnesium in mature human enamel. Caries Res 15, 7077.CrossRefGoogle ScholarPubMed
Rüfenacht, H.S. & Fleisch, H. (1984). Measurement of inhibitors of calcium phosphate precipitation in plasma ultrafiltrate. Am J Physiol 246, 648655.Google ScholarPubMed
Sabel, N., Dietz, W., Lundgren, T., Nietzsche, S., Odelius, H., Rythén, M., Rizell, S., Robertson, A., Norén, J.G. & Klingberg, G. (2009a). Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS. Swed Dent J 33, 7583.Google Scholar
Sabel, N., Klingberg, G., Nietzsche, S., Robertson, A., Odelius, H. & Norén, J.G. (2009b). Analysis of some elements in primary enamel during postnatal mineralization. Swed Dent J 33, 8595.Google Scholar
Sabel, N., Robertson, A., Nietzsche, S. & Norén, J.G. (2012). Demineralization of enamel in primary second molars related to properties of the enamel. Sci World J 2012, 587254.CrossRefGoogle ScholarPubMed
Sasaki, T., Debari, K. & Higashi, S. (1984). Energy-dispersive X-ray microanalysis and scanning electron microscopy of developing and mature cat enamel. Arch Oral Biol 29, 431436.CrossRefGoogle ScholarPubMed
Shaw, J.H. & Yen, P.K. (1972). Sodium, potassium, and magnesium concentrations in the enamel and dentin of human and rhesus monkey teeth. J Dent Res 51, 95101.CrossRefGoogle ScholarPubMed
Simmer, J.P. & Fincham, A.G. (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6, 84108.CrossRefGoogle ScholarPubMed
Simmer, J.P., Papagerakis, P., Smith, C.E., Fisher, D.C., Rountrey, A.N., Zheng, L. & Hu, J.C. (2010). Regulation of dental enamel shape and hardness. J Dent Res 89, 10241038.CrossRefGoogle ScholarPubMed
Smith, C.E. (1998). Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9, 128161.CrossRefGoogle ScholarPubMed
Spencer, P., Barnes, C., Martini, J., Garcia, R., Elliott, C. & Doremus, R. (1989). Incorporation of magnesium into rat dental enamel and its influence on crystallization. Arch Oral Biol 34, 767771.CrossRefGoogle ScholarPubMed
Srot, V., Bussmann, B., Salzberger, U., Koch, C.T. & van Aken, P.A. (2012). Linking microstructure and nanochemistry in human dental tissues. Microsc Microanal 18, 509523.CrossRefGoogle ScholarPubMed
Steinfort, J., Driessens, F.C., Heijligers, H.J. & Beertsen, W. (1991). The distribution of magnesium in developing rat incisor dentin. J Dent Res 70, 187191.CrossRefGoogle ScholarPubMed
Suga, S. (1989). Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res 3, 188198.CrossRefGoogle ScholarPubMed
Sydney-Zax, M., Mayer, I. & Deutsch, D. (1991). Carbonate content in developing human and bovine enamel. J Dent Res 70, 913916.CrossRefGoogle ScholarPubMed
Terpstra, R.A. & Driessens, F.C. (1986). Magnesium in tooth enamel and synthetic apatites. Calcif Tissue Int 39, 348354.CrossRefGoogle ScholarPubMed
Weatherell, J.A. (1975). Composition of dental enamel. Br Med Bull 31, 115119.CrossRefGoogle ScholarPubMed
Weatherell, J.A., Robinson, C. & Hallsworth, A.S. (1974). Variations in the chemical composition of human enamel. J Dent Res 53, 180192.CrossRefGoogle ScholarPubMed
Weerheijm, K.L. (2004). Molar incisor hypomineralization (MIH): Clinical presentation, aetiology and management. Dent Update 31, 912.CrossRefGoogle ScholarPubMed
Willmott, N.S., Bryan, R.A. & Duggal, M.S. (2008). Molar-incisor-hypomineralization: A literature review. Eur Arch Paediatr Dent 9, 172179.CrossRefGoogle ScholarPubMed
Wogelius, P., Haubek, D. & Poulsen, S. (2008). Prevalence and distribution of demarcated opacities in permanent 1st molars and incisors in 6 to 8-year-old Danish children. Acta Odontol Scand 66, 5864.CrossRefGoogle ScholarPubMed
Wright, J.T., Hall, K.I. & Grubb, B.R. (1996). Enamel mineral composition of normal and cystic fibrosis transgenic mice. Adv Dent Res 10, 270274.CrossRefGoogle ScholarPubMed
Xie, Z., Kilpatrick, N.M., Swain, M.V., Munroe, P.R. & Hoffman, M. (2008). Transmission electron microscope characterisation of molar-incisor-hypomineralization. J Mater Sci Mater Med 19, 31873192.CrossRefGoogle Scholar
Xie, Z.H., Mahoney, E.K., Kilpatrick, N.M., Swain, M.V. & Hoffman, M. (2007). On the structure-property relationship of sound and hypomineralized enamel. Acta Biomater 3, 865872.CrossRefGoogle ScholarPubMed
Supplementary material: File

Melin supplementary material


Download Melin supplementary material(File)
File 38 KB
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

XRMA and ToF-SIMS Analysis of Normal and Hypomineralized Enamel
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

XRMA and ToF-SIMS Analysis of Normal and Hypomineralized Enamel
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

XRMA and ToF-SIMS Analysis of Normal and Hypomineralized Enamel
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *