Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-29T23:56:37.770Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Unusual Micrometric Calcite–Aragonite Interface in the Abalone Shell Haliotis (Mollusca, Gastropoda)

Published online by Cambridge University Press:  05 November 2013

Yannicke Dauphin*
UMR 8148 IDES, bât. 504, Université Paris Sud, 91405 Orsay cedex, France
Jean-Pierre Cuif
UMR 8148 IDES, bât. 504, Université Paris Sud, 91405 Orsay cedex, France
Hiram Castillo-Michel
ID21, ESRF, BP 220, 6 rue J. Horowitz, 38043 Grenoble, France
Corinne Chevallard
UMR SIS2M 3299, LIONS, CEA, 91191 Gif sur Yvette, France
Bastien Farre
UMR 8148 IDES, bât. 504, Université Paris Sud, 91405 Orsay cedex, France UMR 7327 ISTO, 1A rue de la férollerie, 45100 Orléans, France
Anders Meibom
Laboratory for Biological Geochemistry, School of Architecture, ENAC, EPFL, 1015 Lausanne, Switzerland
*Corresponding author. E-mail:
Get access


Species of Haliotis (abalone) show high variety in structure and mineralogy of the shell. One of the European species (Haliotis tuberculata) in particular has an unusual shell structure in which calcite and aragonite coexist at a microscale with small patches of aragonite embedded in larger calcitic zones. A detailed examination of the boundary between calcite and aragonite using analytical microscopies shows that the organic contents of calcite and aragonite differ. Moreover, changes in the chemical composition of the two minerals seem to be gradual and define a micrometric zone of transition between the two main layers. A similar transition zone has been observed between the layers in more classical and regularly structured mollusk shells. The imbrication of microscopic patches of aragonite within a calcitic zone suggests the occurrence of very fast physiological changes in these taxa.

Biological Applications
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Auzoux-Bordenave, S., Badou, A., Gaume, B., Berland, S., Helléouet, M.N., Millet, C. & Huchette, S. (2010). Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata . J Struct Biol 171, 277290.CrossRefGoogle ScholarPubMed
Boggild, O.B. (1930). The shell structure of the molluscs. D Kgl Danske Vidensk Selsk Skr, naturvidensk og mathem 9(2), 231326.Google Scholar
Brahmi, C., Meibom, A., Smith, D.C., Stolarski, J., Auzoux-Bordenave, S., Nouet, J., Doumenc, D., Dejiat, C. & Domart-Coulon, I. (2010). Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia . Coral Reefs 29, 175189.CrossRefGoogle Scholar
Chan, J.F.Y. & Saleuddin, A.S.M. (1974). Acid phosphatase in the mantle of shell-regenerating snail Helisoma duryi duryi . Calc Tiss Res 15, 213220.CrossRefGoogle ScholarPubMed
Clavier, J. (1982). Premières données sur les stocks naturels d'Ormeaux de la région de St. Malo. Association pour la mise en valeur du littoral de la côte d'émeraude, unpublished report, 100 pp. Google Scholar
Cuif, J.P., Dauphin, Y., Howard, L., Nouet, J., Rouzière, S. & Salomé, M. (2011). Is the pearl layer a reversed shell? A re-examination of the theory of pearl formation through physical characterizations of pearl and shell developmental stages in Pinctada margaritifera . Aquat Living Resour 24, 411424.CrossRefGoogle Scholar
Dauphin, Y., Ball, A.D., Cotte, M., Cuif, J.P., Meibom, A., Salomé, M., Susini, J. & Williams, C.T. (2008). Structure and composition of the nacre-prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal Bioanal Chem 390, 16591669.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J.P., Cotte, M. & Salomé, M. (2012). Structure and composition of the boundary zone between aragonitic crossed lamellar and calcitic prism layers in the shell of Concholepas concholepas (Mollusca, Gastropoda). Inverteb Biol 131, 165176.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J.P., Mutvei, H. & Denis, A. (1989). Mineralogy, chemistry and ultrastructure of the external shell layer in ten species of Haliotis, with reference to H. tuberculata (Mollusca, Archaeogastropoda). Bull Geol Inst Univ Uppsala NS 15, 738.Google Scholar
Dauphin, Y., Cuif, J.P., Salomé, M. & Susini, J. (2005). Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge. Am Mineral 90, 17481758.CrossRefGoogle Scholar
Dauphin, Y., Williams, C.T., Salomé, M., Susini, J. & Cuif, J.P. (2007). Microstructures and compositions of multilayered shells of Haliotis (Mollusca, Gastropoda). In Biomineralization: From Paleontology to Materials Science, Proc 9th Inter Symp Biomin, Arias, J.L. & Fernandez, M.S. (Eds.), pp. 265272. Chile: University of Santiago.Google Scholar
Farre, B., Brunelle, A., Laprévote, O., Cuif, J.P., Williams, C.T. & Dauphin, Y. (2011). Shell layers of the black-lip pearl oyster Pinctada margaritifera: Matching microstructure and composition. Comp Biochem Physiol B 159, 131139.CrossRefGoogle ScholarPubMed
Jardillier, E., Rousseau, M., Gendron-Badou, A., Fröhlich, F., Smith, D.C., Martin, M., Helléouet, M.N., Huchette, S., Doumenc, D. & Auzoux-Bordenave, S. (2008). A morphological and structural study of the larval shell from the abalone Haliotis tuberculata . Mar Biol 154, 735744.CrossRefGoogle Scholar
Jolly, C., Berland, S., Millet, C., Borzeix, S., Lopez, E. & Doumenc, D. (2004). Zonal localization of shell matrix proteins in mantle of Haliotis tuberculata (Mollusca, Gastropoda). Mar Biotechnol 6, 541551.CrossRefGoogle Scholar
Kessel, E. (1935). Über den bau der Haliotis-Schale. Zool Anzeiger 112, 290299.Google Scholar
Kopp, C., Meibom, A., Beyssac, O., Stolarski, J., Djediat, S., Szlachetko, J. & Domart-Coulon, I. (2011). Calcareous sponge biomineralization: Ultrastructural and compositional heterogeneity of spicules in Leuconia johnstoni Carter 1871. J Struct Biol 173, 99109.CrossRefGoogle Scholar
Meenakshi, V.R., Blackwelder, P.L., Hare, P.E., Wilbur, K.M. & Watabe, N. (1975). Studies on shell regeneration-I. Matrix and mineral composition of the normal and regenerated shell of Pomacea paludosa . Comp Biochem Physiol A 50, 347351.CrossRefGoogle ScholarPubMed
Meenakshi, V.R., Blackwelder, P.L. & Wilbur, K. (1973). An ultrastructural study of shell regeneration in Mytilus edulis (Mollusca: Bivalvia). J Zool 171, 475484.CrossRefGoogle Scholar
Meenakshi, V.R., Donnay, G., Blackwelder, P.L. & Wilbur, K.M. (1974). The influence of substrata on calcification patterns in molluscan shell. Calc Tiss Res 15, 3144.CrossRefGoogle ScholarPubMed
Meibom, A., Cuif, J.P., Hillion, F., Constantz, B.R., Juillet-Leclerc, A., Dauphin, Y., Watanabe, T. & Dunbar, R.B. (2004). Distribution of magnesium in coral skeleton. Geophys Res Lett 31, doi:10.1029/2004GL021313.CrossRefGoogle Scholar
Meibom, A., Cuif, J.P., Houlbrèque, F., Mostefaoui, S., Dauphin, Y., Meibom, K.L. & Dunbar, R. (2008). Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta 72, 15551569.CrossRefGoogle Scholar
Mutvei, H., Dauphin, Y. & Cuif, J.P. (1985). Observations sur l'organisation de la couche externe du test des Haliotis (Gastropoda): Un cas exceptionnel de variabilité minéralogique et microstructurale. Bull Mus Natl Hist Nat Paris, 4è sér, 7(A1), 7391.Google Scholar
Muzii, E.O., Catherine, H. & Skinner, W. (1966). Calcite deposition during shell repair by the aragonitic gastropod Murex fulvescens . Science 151, 201203.CrossRefGoogle ScholarPubMed
Nouet, J., Cotte, M., Cuif, J.P., Dauphin, Y. & Salomé, M. (2012). Biochemical change at the setting-up of the crossed-lamellar layer in Nerita undata (Mollusca, Gastropoda). Minerals 2, 8599.CrossRefGoogle Scholar
Reed-Miller, C. (1983). Scanning electron microscopy of the regenerated shell of the marine archaeogastropod. Tegula Biol Bull 165, 723732.CrossRefGoogle ScholarPubMed
Saleuddin, A.S.M. & Wilbur, K.M. (1969). Shell regeneration in Helix pomatia . Can J Zool 47, 5153.CrossRefGoogle Scholar
Taylor, J.D., Kennedy, W.J. & Hall, A. (1969). The shell structure and mineralogy of the Bivalvia. I. Introduction. Nuculacae-Trigonacae. Bull Br Mus (Nat Hist) Zool 3, 1125.Google Scholar
Uozumi, S. & Suzuki, S. (1979). “Organic membrane-shell” and initial calcification in regeneration. J Fac Sci Hokkaido Univ, ser 4, Geol Miner 19, 3774.Google Scholar
White, W.B. (1974). The carbonate minerals. In The Infrared Spectra of Minerals, Farmer, V.C. (Ed.), pp. 227283. London: Mineralogical Society.CrossRefGoogle Scholar