Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-xvx2z Total loading time: 0.319 Render date: 2021-07-26T21:22:23.403Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nanoprobe Fourier-Transform Photoabsorption Spectroscopy Using a Supercontinuum Light Source

Published online by Cambridge University Press:  03 May 2012

Kiyoshiro Ishibe
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Satoru Nakada
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Yutaka Mera
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Koji Maeda
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Corresponding
E-mail address:

Abstract

A scheme of photoabsorption spectroscopy based on scanning tunneling microscopy (STM) has been developed by using a supercontinuum light as the wideband light source of a Fourier transform interferometer for spectroscopic measurements. The performance was demonstrated for a sample of GaAs. The proof-of-concept test showed that the use of the supercontinuum light instead of halogen lamps greatly enhances the signal-to-noise ratio due to the high brilliance of the supercontinuum light emitted from a small core of the photonic crystal fiber that enables tight focusing of the spectroscopy light onto the sample beneath the STM tip.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.S. (2000). Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76(21), 31303132.CrossRefGoogle Scholar
Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. (2005). Nanoscale vibrational analysis of single-walled carbon nanotubes. J Am Chem Soc 127(8), 25332537.CrossRefGoogle ScholarPubMed
Azoulay, J., Deâbarre, A., Richard, A. & Tcheânio, P. (1999). Field enhancement and apertureless near-field optical spectroscopy of single molecules. J Microsc 194(2-3), 486490.CrossRefGoogle ScholarPubMed
Berweger, S., Neacsu, C.C., Mao, Y., Zhou, H., Wong, S.S. & Raschke, M.B. (2009). Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat Nanotechnol 4, 496499.CrossRefGoogle ScholarPubMed
Bielefeldt, H., Hörsch, I., Krausch, G., Lux-Steiner, M., Mlynek, J. & Marti, O. (1994). Reflection-scanning near-field optical microscopy of opaque samples. Appl Phys A 59(2), 103108.CrossRefGoogle Scholar
Bubendorff, J.L., Pastreâ, D. & Troyon, M. (2000). Cathodoluminescence imaging and spectroscopy by near-field detection. J Microsc 199(3), 191196.CrossRefGoogle ScholarPubMed
Carmichael, E.S., Ballard, J.B., Lyding, J.W. & Gruebele, M. (2007). Frequency-modulated, single-molecule absorption detected by scanning tunneling microscopy. J Phys Chem C 111(8), 33143321.CrossRefGoogle Scholar
Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J.M. (2005). Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30 (18), 23882390.CrossRefGoogle ScholarPubMed
Dudley, J.M., Genty, G. & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78(4), 11351184.CrossRefGoogle Scholar
Dumas, Ph., Gu, M., Syrykh, C., Hallimaoui, A., Salvan, F., Gimzewski, J.K. & Schlittler, R.R. (1994). Photon spectroscopy, mapping, and topography of 85% porous silicon. J Vac Sci Technol B 12(3), 20642066.CrossRefGoogle Scholar
Felts, J.R., Kjoller, K., Prater, C.B. & King, W.P. (2010). Enhanced nanometer-scale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. Proc IEEE 23rd Int. Conf. Micro Electro Mechanical Systems, Hong Kong, China, January 24–28, 2010, pp. 136–139.Google Scholar
Fujihira, M., Monobe, H., Muramatsu, H. & Ataka, T. (1994). Scanning near-field microscopy and nanoscopic fluorescence spectroscopy in combination with a non-contact scanning force microscope. Chem Lett 23, 657660.CrossRefGoogle Scholar
Grafström, S. (2002). Photoassisted scanning tunneling microscopy. J Appl Phys 91(4), 17171753.CrossRefGoogle Scholar
Hammiche, A., Pollock, H.M., Reading, M., Claybourn, M., Turner, P.H. & Jewkes, K. (1999). Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl Spectrosc 53(7), 810815.CrossRefGoogle Scholar
Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. (2000). Metallized tip amplification of near-field Raman scattering. Opt Comm 183, 333336.CrossRefGoogle Scholar
Hida, A., Mera, Y. & Maeda, K. (2001a). Electric field modulation spectroscopy by scanning tunneling microscopy with a nanometer-scale resolution. Appl Phys Lett 78(20), 30293031.CrossRefGoogle Scholar
Hida, A., Mera, Y. & Maeda, K. (2001b). Nanometer-scale measurements of photoabsorption spectra of individual defects in semiconductors. Appl Phys Lett 78(21), 31903192.CrossRefGoogle Scholar
Huber, A.J., Ziegler, A., Köck, T. & Hillenbrand, R. (2009). Infrared nanoscopy of strained semiconductors. Nat Nanotechnol 4, 153157.CrossRefGoogle ScholarPubMed
Jeong, M.S., Kim, J.Y., Kim, Y.-W., White, J.O., Suh, E.-K., Hong, C.-H. & Lee, H.J. (2001). Spatially resolved photoluminescence in InGaN/GaN quantum wells by near-field scanning optical microscopy. Appl Phys Lett 79(7), 976978.CrossRefGoogle Scholar
Klapetek, P., Bujdák, J. & Buršik, J. (2010). Near-field scanning optical microscopy local luminescence studies of rhodamine dye. Cent Eur J Phys 8(3), 312317.Google Scholar
Naruse, N., Mera, Y., Fukuzawa, Y., Nakamura, Y., Ichikawa, M. & Maeda, K. (2007a). Fourier transform photoabsorption spectroscopy based on scanning tunneling microscopy. J Appl Phys 102(11), 114301-1–6.CrossRefGoogle Scholar
Naruse, N., Mera, Y. & Maeda, K. (2007b). Response analysis for identifying the origin of photo-modulated current contrasts in scanning tunneling microscopic imaging semiconductor surfaces. Ultramicroscopy 107(8), 568574.CrossRefGoogle ScholarPubMed
Naruse, N., Mera, Y., Nakamura, Y., Ichikawa, M. & Maeda, K. (2009). Fourier-transform photoabsorption spectroscopy of quantum-confinement effects in individual GeSn nanodots. Appl Phys Lett 94(9), 093104-1–3.CrossRefGoogle Scholar
Okuda, T., Eguchi, T., Akiyama, K., Harasawa, A., Kinoshita, T., Hasegawa, Y., Kawamori, M., Haruyama, Y. & Matsui, S. (2009). Nanoscale chemical imaging by scanning tunneling microscopy assisted by synchrotron radiation. Phys Rev Lett 102(10), 105503-1–4.CrossRefGoogle ScholarPubMed
Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. (2004). Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92(9), 096101-1–4.CrossRefGoogle ScholarPubMed
Saito, A., Takagi, Y., Takahashi, K., Hosokawa, H., Hanai, K., Tanaka, T., Akai-kasaya, M., Tanaka, Y., Shin, S., Ishikawa, T., Kuwahara, Y. & Aono, M. (2008). Nanoscale elemental identification by synchrotron-radiation-based scanning tunneling microscopy. Surf Interf Anal 40(6-7), 10331036.CrossRefGoogle Scholar
Takeuchi, O., Aoyama, M., Oshima, R., Okada, Y., Oigawa, H., Sano, N., Shigekawa, H., Morita, R. & Yamashita, M. (2004). Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy. Appl Phys Lett 85(15), 32683270.CrossRefGoogle Scholar
Toda, Y., Shinomori, S., Suzuki, K. & Arakawa, Y. (1998). Near-field optical spectroscopy of self-assembled quantum dots: NSOM apparatus for measuring the features of single dots. Solid-State Electron 42, 10831086.CrossRefGoogle Scholar
Ushioda, S., Uehara, Y. & Kuwahara, M. (1992). STM light emission spectroscopy of Au film. Appl Surf Sci 60/61, 448453.CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoprobe Fourier-Transform Photoabsorption Spectroscopy Using a Supercontinuum Light Source
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoprobe Fourier-Transform Photoabsorption Spectroscopy Using a Supercontinuum Light Source
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoprobe Fourier-Transform Photoabsorption Spectroscopy Using a Supercontinuum Light Source
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *