Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-23T18:39:08.135Z Has data issue: false hasContentIssue false

Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging

Published online by Cambridge University Press:  04 March 2016

Jean-Yves Maetz*
Affiliation:
Université de Lyon, INSA de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne Cedex, France
Sophie Cazottes
Affiliation:
Université de Lyon, INSA de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne Cedex, France
Catherine Verdu
Affiliation:
Université de Lyon, INSA de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne Cedex, France
Frédéric Danoix
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen—UMR CNRS 6634—Normandie Université, 76801 Saint Étienne du Rouvray Cedex, France
Xavier Kléber
Affiliation:
Université de Lyon, INSA de Lyon, MATEIS, UMR CNRS 5510, 69621 Villeurbanne Cedex, France
*
*Corresponding author.jean-yves.maetz@ubc.ca
Get access

Abstract

The microstructural evolution of a 2101 lean duplex stainless steel (DSS) during isothermal aging from room temperature to 470 °C was investigated using thermoelectric power (TEP) measurements to follow the kinetics, atom probe tomography, and transmission electron microscopy. Despite the low Ni, Cr, and Mo contents, the lean DSS was sensitive to αα′ phase separation and Ni–Mn–Si–Al–Cu clustering at intermediate temperatures. The time–temperature pairs characteristic of the early stages of ferrite decomposition were determined from the TEP kinetics. Considering their composition and locations, the clusters are most likely G phase precursors.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfonsson, E. (2010). Lean duplex—The first decade of service experience. In Duplex Stainless Steel—DSS 2010 Conference Proceedings, Charles, J. (Ed.), pp. 787793. Beaune: Stainless Steel World.Google Scholar
Auger, P., Danoix, F., Grisot, O., Massoud, J.P. & Van Duysen, J.C. (1995). Spinodal decomposition in duplex stainless steels, investigated by atom probe, neutrons scattering and thermoelectric measurements. Ann Phys C3–20, 143.Google Scholar
Auger, P., Danoix, F., Menand, A., Bonnet, S., Bourgoin, J. & Guttmann, M. (1990). Atom probe and transmission electron microscopy study of aging of cast duplex stainless steels. Mater Sci Technol 6, 301313.Google Scholar
Benkirat, D., Merle, P. & Borrelly, R. (1988). Effects of precipitation on the thermoelectric-power of iron carbon alloys. Acta Metall 36, 613620.Google Scholar
Blatt, F.J., Schroeder, P.A., Foiles, C.L. & Greig, D. (1976). Thermoelectric Power of Metals . New York: Plenum Press.Google Scholar
Borrelly, R. & Benkirat, D. (1985). Sensitivity of thermoelectric power to the microstructural state of iron and iron-nitrogen. Acta Metall 33, 855866.CrossRefGoogle Scholar
Brenner, S.S., Miller, M.K. & Soffa, W.A. (1982). Spinodal decomposition of iron-32 at% chromium at 470°C. Scr Metall 16, 831836.Google Scholar
Brown, J.E. & Smith, G.D.W. (1991). Atom probe studies of spinodal processes in duplex stainless steels and single- and dual-phase Fe–Cr–Ni alloys. Surf Sci 246, 285291.Google Scholar
Chandra, D. & Schwartz, L.H. (1971). Mössbauer effect study of the 475°C decomposition of Fe–Cr. Metall Trans 2, 511519.Google Scholar
Charles, J. & Chemelle, P. (2010). The history of duplex developments, nowadays DSS properties and duplex market future trends. In Duplex Stainless Steel—DSS 2010 Conference Proceedings, Charles, J. (Ed.), pp. 2979. Beaune: Stainless Steel World.Google Scholar
Danoix, F. & Auger, P. (2000). Atom probe studies of the Fe–Cr system and stainless steels aged at intermediate temperature: A review. Mater Charact 44, 177201.Google Scholar
Danoix, F., Auger, P. & Blavette, D. (1992). An atom-probe investigation of some correlated phase transformations in Cr, Ni, Mo containing supersaturated ferrites. Surf Sci 266, 364369.Google Scholar
Danoix, F., Auger, P. & Blavette, D. (2004). Hardening of aged duplex stainless steels by spinodal decomposition. Microsc Microanal 10, 349354.Google Scholar
Danoix, F., Auger, P., Chambreland, S. & Blavette, D. (1994). A 3D study of G-phase precipitation in spinodally decomposed α-ferrite by tomographic atom probe analysis. Microsc Microanal Microstruct 5, 121132.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer Science & Business Media.Google Scholar
Hamaoka, T., Nomoto, A., Nishida, K., Dohi, K. & Soneda, N. (2012 a). Accurate determination of the number density of G-phase precipitates in thermally aged duplex stainless steel. Philos Mag 92, 27162732.Google Scholar
Hamaoka, T., Nomoto, A., Nishida, K., Dohi, K. & Soneda, N. (2012 b). Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel. Philos Mag 92, 43544375.Google Scholar
Hédin, M., Massoud, J.P. & Danoix, F. (1996). Influence of the quenching rate on the spinodal decomposition in a duplex stainless steel. J Phys IV 6, C5-235C5-240.Google Scholar
Hedström, P., Huyan, F., Zhou, J., Wessman, S., Thuvander, M. & Odqvist, J. (2013). The 475°C embrittlement in Fe–20Cr and Fe–20Cr–X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography. Mater Sci Eng A 574, 123129.Google Scholar
Johansson, P. & Liljas, M. (2002). A new lean duplex stainless steel for construction purposes. 4th European Stainless Steel Science and Market Congress, Proceedings, Paris, France, 2002.Google Scholar
Kleber, X., Simonet, L. & Fouquet, F. (2006). A computational study of the thermoelectric power of 2D two phase materials. Model Simul Mater Sci Eng 14, 2131.Google Scholar
Lamontagne, A., Kleber, X., Massardier-Jourdan, V. & Mari, D. (2014). Identification of the mechanisms responsible for static strain ageing in heavily drawn pearlitic steel wires. Philos Mag Lett 94, 495502.Google Scholar
Langer, J.S., Bar-on, M. & Miller, H.D. (1975). New computational method in the theory of spinodal decomposition. Phys Rev A 11, 14171429.Google Scholar
Lasseigne, A.N., Olson, D.L., Kleebe, H.-J. & Boellinghaus, T. (2005). Microstructural assessment of nitrogen-strengthened austenitic stainless steel welds using thermoelectric power. Metall Mater Trans A 36, 30313039.Google Scholar
Lavaire, N., Merlin, J. & Sardoy, V. (2001). Study of ageing in strained ultra and extra low carbon steels by thermoelectric power measurement. Scr Mater 44, 553559.Google Scholar
Lemoine, C., Fnidiki, A., Teillet, J., Hédin, M. & Danoix, F. (1998). Mössbauer study of the ferrite decomposition in unaged duplex stainless steels. Scr Mater 39, 6166.Google Scholar
Maetz, J.-Y., Cazottes, S., Verdu, C. & Kleber, X. (2015). Precipitation and phase transformations in 2101 lean duplex stainless steel during isothermal aging. Metall Mater Trans A 47A, 239253.Google Scholar
Mateo, A., Llanes, L., Anglada, M., Redjaïmia, A. & Metauer, G. (1997). Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel. J Mater Sci 32, 45334540.Google Scholar
Mehrer, H. (Ed.) (1990). Diffusion in Solids Metals and Alloys, Landolt-Börnstein, Group III: Vol. 26. Springer Berlin Heidelberg: Springer.Google Scholar
Meyer, N., Mantel, M., Gauthier, A. & Bourgin, C. (2011). Long term aging of various duplex stainless steels between 250°C and 400°C—Relationship between toughness measurements and metallurgical parameters. Revue de Métallurgie 108, 213223.Google Scholar
Mithieux, J.D. & Fourmentin, R. (2010). 475°C embrittlement in duplex: A review. In Duplex Stainless Steel—DSS 2010 Conference Proceedings, Charles, J. (Ed.), Beaune: Stainless Steel World.Google Scholar
Nilsson, J.-O. (1992). Super duplex stainless steels. Mater Sci Technol 8, 685700.Google Scholar
Pareige, C., Novy, S., Saillet, S. & Pareige, P. (2011). Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years). J Nucl Mater 411, 9096.Google Scholar
Perez, M., Sidoroff, C., Vincent, A. & Esnouf, C. (2009). Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes. Acta Mater 57, 31703181.Google Scholar
Stiller, K., Hättestrand, M. & Danoix, F. (1998). Precipitation in 9Ni–12Cr–2Cu maraging steels. Acta Mater 46, 60636073.CrossRefGoogle Scholar
Takeuchi, T., Kameda, J., Nagai, Y., Toyama, T., Nishiyama, Y. & Onizawa, K. (2011). Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography. J Nucl Mater 415, 198204.Google Scholar
Thuvander, M., Zhou, J., Odqvist, J., Hertzman, S. & Hedström, P. (2012). Observations of copper clustering in a 25Cr–7Ni super duplex stainless steel during low-temperature aging under load. Philos Mag Lett 92, 336343.Google Scholar
Weng, K.L., Chen, H.R. & Yang, J.R. (2004). The low-temperature aging embrittlement in a 2205 duplex stainless steel. Mater Sci Eng A 379, 119132.Google Scholar
Williams, R.O. & Praxton, H.W. (1957). The nature of aging of binary chromium alloys around 500°C. J Iron Steel Inst 185, 358374.Google Scholar
Zhou, J., Odqvist, J., Höglund, L., Thuvander, M., Barkar, T. & Hedström, P. (2014). Initial clustering—A key factor for phase separation kinetics in Fe–Cr-based alloys. Scr Mater 75, 6265.Google Scholar
Zhou, J., Odqvist, J., Thuvander, M., Hertzman, S. & Hedström, P. (2012). Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments. Acta Mater 60, 58185827.Google Scholar
Supplementary material: File

Maetz supplementary material

Figure S1

Download Maetz supplementary material(File)
File 3.9 MB
Supplementary material: File

Maetz supplementary material

Figure S2

Download Maetz supplementary material(File)
File 465.6 KB
Supplementary material: File

Maetz supplementary material

Figure S3

Download Maetz supplementary material(File)
File 517.7 KB