Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T16:11:37.856Z Has data issue: false hasContentIssue false

Atom Probe Tomography Simulations and Density Functional Theory Calculations of Bonding Energies in Cu3Au

Published online by Cambridge University Press:  15 October 2012

Torben Boll*
Affiliation:
Institut für Materialphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Zhi-Yong Zhu
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Talaat Al-Kassab
Affiliation:
Institut für Materialphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Udo Schwingenschlögl
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
*
*Corresponding author. E-mail: Torben.Boll@kaust.edu.sa
Get access

Abstract

In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies.

Type
Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. (2001). WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Austria: Techn. Universität Wien.Google Scholar
Boll, T. (2005). Untersuchung der Platzbesetzung in γ-TiAlNb mittels Atomsondentomographie und Simulation. Universität Göttingen, Germany. Google Scholar
Boll, T. (2010). Bestimmung von Platzbesetzung und Bindungsenergien mittels Atomsondentomographie. Göttingen: Universität Göttingen, Germany. Google Scholar
Boll, T. & Al-Kassab, T. (forthcoming). Interpretation of atom probe tomography data for the intermetallic TiAl + Nb by means of field evaporation simulation. Accepted for publication in Ultramicroscopy.Google Scholar
Boll, T., Al-Kassab, T., Yuan, Y. & Liu, Z.G. (2007). Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107(9), 796801.Google Scholar
Deconihout, B., Bostel, A., Bas, P., Chambreland, S., Letellier, L., Danoix, F. & Blavette, D. (1994). Investigation of some selected metallurgical problems with the tomographic atom probe. Appl Surf Sci 7677(0), 145154.Google Scholar
Duval, S., Chambreland, S., Loiseau, A. & Blavette, D. (1998). Investigation of ordering kinetics in Cn(3)Au with the tomographic atom probe. J Mater Res 13(6), 15021510.Google Scholar
Gault, B., Moody, M.P., De Geuser, F., Haley, D., Stephenson, L.T. & Ringer, S.P. (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95(3), 034103. Google Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13(6), 437447.Google Scholar
Haasen, P. (1996). Physical Metallurgy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hohenberg, P. & Kohn, W. (1964). Inhomogeneous electron gas. Phys Rev 136(3B), B864B871.CrossRefGoogle Scholar
Kreuzer, H.J. (2004). Physics and chemistry in high electric fields. Surf Interf Anal 36(5-6), 372379.Google Scholar
Kreuzer, H.J., Wang, L.C. & Wang, N.D. (1992). Self-consistent calculation of atomic adsorption on metals in high electric fields. Phys Rev B 45(20), 1205012055.Google Scholar
Lefebvre, W., Loiseau, A. & Menand, A. (2002). Field evaporation behaviour in the g-phase in TiAl during analysis in the tomographic atom probe. Ultramicroscopy 92, 7787.CrossRefGoogle Scholar
Liu, J., Wu, C. & Tsong, T.T. (1991). Measurement of the binding energy of kink-site atoms of metals and alloys. Phys Rev B 43(14), 1159511604.Google Scholar
Marquis, E.A. & Vurpillot, F. (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14(6), 561570.CrossRefGoogle ScholarPubMed
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford Science Publications.CrossRefGoogle Scholar
Mueller, E.W. & Tsong, T.T. (1969). Field Ion Microscopy: Principles and Applications. New York: Elsevier.Google Scholar
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys Rev Lett 77(18), 38653868.Google Scholar
Suchorski, Y., Schmidt, W.A., Block, J.H. & Kreuzer, H.J. (1994). Comparative studies on field ionization at surface sites of Rh, Ag and Au—Differences in local electric field enhancement. Vacuum 45(2-3), 259262.Google Scholar
Toulemonde, M., Assmann, W., Trautmann, C. & Grüner, F. (2002). Jetlike component in sputtering of LiF induced by swift heavy ions. Phys Rev Lett 88(5), 57602. Google Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70(1), 211233.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three dimensional atom probe. Appl Phys Lett 76(21), 31273129.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2001a). A new approach to the interpretation of atom probe field-ion microscopy images. Ultramicroscopy 89(1-3), 137144.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., Menand, A. & Blavette, D. (1999). Trajectories of field emitted ions in 3D atom-probe. Eur Phys J AP 6, 217221.CrossRefGoogle Scholar
Vurpillot, F., Cerezo, A., Blavette, D. & Larson, D.J. (2004). Modeling image distortions in 3DAP. Microsc Microanal 10(3), 384390.Google Scholar
Vurpillot, F., Costa, G.d., Menand, A. & Blavette, D. (2001b). Structural analyses in three-dimensional atom probe: A Fourier transform approach. J Microsc 203, 295302.Google Scholar
Warren, P.J., Cerezo, A. & Smith, G.D.W. (1998). Observation of atomic planes in 3DAP analysis. Ultramicroscopy 73(1-4), 261266.Google Scholar