Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-06T21:20:33.124Z Has data issue: false hasContentIssue false

Assessing the Spatial Accuracy of the Reconstruction in Atom Probe Tomography and a New Calibratable Adaptive Reconstruction

Published online by Cambridge University Press:  25 April 2019

Anna V. Ceguerra*
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Alec C. Day
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Simon P. Ringer
Affiliation:
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
*
*Author for correspondence: Anna V. Ceguerra, E-mail: anna.ceguerra@sydney.edu.au
Get access

Abstract

We define a measure for the accuracy of tomographic reconstruction in atom probe tomography, named here the spatial error index. We demonstrate that this index can be used to compare rigorously the spatial accuracy of various different approaches to the calculation of tomographic reconstruction. This is useful, for example, to evaluate the performance of alternate tomographic reconstruction approaches, and ensures that the comparisons are independent of individual data quality or other instrumental parameters. We then introduce a new “adaptive reconstruction” formalism that uses a progression of reconstruction parameters based on a per-atom correction from the cube root of the inverse of the voltage, along with linear correction factors linked to the evaporation sequence. We apply the measure for spatial accuracy to this new reconstruction protocol.

Type
Reconstruction
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araullo-Peters, VJ, Breen, A, Ceguerra, AV, Gault, B, Ringer, SP & Cairney, JM (2015). A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154(Supplement C), 714.Google Scholar
Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87–88(Supplement C), 298304.Google Scholar
Blavette, D, Sarrau, JM, Bostel, A & Gallot, J (1982). Direction et distance d'analyse à la sonde atomique. Rev Phys Appl (Paris) 17(7), 435440.Google Scholar
Da Costa, G, Vurpillot, F, Bostel, A, Bouet, M & Deconihout, B (2004). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76(1), 013304.Google Scholar
De Geuser, F & Gault, B (2017). Reflections on the projection of ions in atom probe tomography. Microsc Microanal 23(2), 238246.Google Scholar
Feffer, SM (1995). Microscopes to munitions. Ernst Abbe, Carl Zeiss, and the Transformation of Technical Optics 1850–1914, 1350.Google Scholar
Felfer, P & Cairney, J (2016). A computational geometry framework for the optimisation of atom probe reconstructions. Ultramicroscopy 169, 6268.Google Scholar
Felfer, P, Scherrer, B, Demeulemeester, J, Vandervorst, W & Cairney, JM (2015). Mapping interfacial excess in atom probe data. Ultramicroscopy 159, 438444.Google Scholar
Gault, B, de Geuser, F, Stephenson, LT, Moody, MP, Muddle, BC & Ringer, SP (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14(4), 296305.Google Scholar
Gault, B, Haley, D, de Geuser, F, Moody, MP, Marquis, EA, Larson, DJ & Geiser, BP (2011 a). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111(6), 448457.Google Scholar
Gault, B, Loi, ST, Araullo-Peters, VJ, Stephenson, LT, Moody, MP, Shrestha, SL, Marceau, RKW, Yao, L, Cairney, JM & Ringer, SP (2011 b). Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111(11), 16191624.Google Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York: Springer.Google Scholar
Gault, B, Moody, MP, de Geuser, F, Haley, D, Stephenson, LT & Ringer, SP (2009 a). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95(3), 034103.Google Scholar
Gault, B, Moody, MP, de Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2009 b). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 034913.Google Scholar
Geiser, BP, Kelly, TF, Larson, DJ, Schneir, J & Roberts, JP (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13(6), 437447.Google Scholar
Kelly, TF, Geiser, BP & Larson, DJ (2007). Definition of spatial resolution in atom probe tomography. Microsc Microanal 13(S02), 16041605.Google Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013 a). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17(5), 236247.Google Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP, Kelly, TF & Humphreys, PSCJ (2013 b). Local Electrode Atom Probe Tomography: A User's Guide. New York: Springer.Google Scholar
Lefebvre, W, Vurpillot, F & Sauvage, X (2016). Atom Probe Tomography: Put Theory into Practice. Elsevier Science.Google Scholar
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Prakash Kolli, R (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159(Part 1), 101111.Google Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York, NY: Springer.Google Scholar
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. USA: Springer.Google Scholar
Peng, Z, Vurpillot, F, Choi, P-P, Li, Y, Raabe, D & Gault, B (2018). On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 5460.Google Scholar
Rolland, N, Vurpillot, F, Duguay, S, Mazumder, B, Speck, JS & Blavette, D (2017). New atom probe tomography reconstruction algorithm for multilayered samples: Beyond the hemispherical constraint. Microsc Microanal 23(2), 247254.Google Scholar
Suram, SK & Rajan, K (2013). Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation. Ultramicroscopy 132, 136142.Google Scholar
Vurpillot, F, Da Costa, G, Menand, A & Blavette, D (2001). Structural analyses in three-dimensional atom probe: A Fourier transform approach. J Microsc 203(3), 295302.Google Scholar
Wallace, ND, Ceguerra, AV, Breen, AJ & Ringer, SP (2018). On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space. Ultramicroscopy 189, 6575.Google Scholar
Weber, S (2016). WinWulff (v1.5.2). Available at http://jcrystal.com/products/winwulff/index.htm.Google Scholar
Yao, L, Moody, MP, Cairney, JM, Haley, D, Ceguerra, AV, Zhu, C & Ringer, SP (2011). Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111(6), 458463.Google Scholar
Supplementary material: File

Ceguerra et al. supplementary material

Ceguerra et al. supplementary material

Download Ceguerra et al. supplementary material(File)
File 27.8 KB