Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T18:53:27.676Z Has data issue: false hasContentIssue false

Advantages of Clustering in the Phase Classification of Hyperspectral Materials Images

Published online by Cambridge University Press:  22 October 2010

Christopher L. Stork*
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0886, USA
Michael R. Keenan
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0886, USA
*
Corresponding author. E-mail: clstork@sandia.gov
Get access

Abstract

Despite the many demonstrated applications of factor analysis (FA) in analyzing hyperspectral materials images, FA does have inherent mathematical limitations, preventing it from solving certain materials characterization problems. A notable limitation of FA is its parsimony restriction, referring to the fact that in FA the number of components cannot exceed the chemical rank of a dataset. Clustering is a promising alternative to FA for the phase classification of hyperspectral materials images. In contrast with FA, the phases extracted by clustering do not have to be parsimonious. Clustering has an added advantage in its insensitivity to spectral collinearity that can result in phase mixing using FA. For representative energy dispersive X-ray spectroscopy materials images, namely a solder bump dataset and a braze interface dataset, clustering generates phase classification results that are superior to those obtained using representative FA-based methods. For the solder bump dataset, clustering identifies a Cu-Sn intermetallic phase that cannot be isolated using FA alone due to the parsimony restriction. For the braze interface sample that has collinearity among the phase spectra, the clustering results do not exhibit the physically unrealistic phase mixing obtained by multivariate curve resolution, a commonly utilized FA algorithm.

Type
Instrumentation and Software Developments
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachmann, C.M., Donato, T.F., Lamela, G.M., Rhea, W.J., Bettenhausen, M.H., Fusina, R.A., Du Bois, K.R., Porter, J.H. & Truitt, B.R. (2002). Automatic classification of land cover on Smith Island, VA, using HyMAP imagery. IEEE Trans Geosci Remote Sens 40, 23132330.Google Scholar
Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press.Google Scholar
Bezdek, J.C., Ehrlich, R. & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10, 191203.Google Scholar
Bro, R. & DeJong, S. (1997). A fast non-negativity-constrained least squares algorithm. J Chemom 11, 393401.Google Scholar
Funk, C.C., Theiler, J., Roberts, D.A. & Borel, C.C. (2001). Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery. IEEE Trans Geosci Remote Sens 39, 14101420.CrossRefGoogle Scholar
Gemperline, P.J. (1999). Computation of the range of feasible solutions in self-modeling curve resolution algorithms. Anal Chem 71, 53985404.CrossRefGoogle ScholarPubMed
Golub, G.H. & Van Loan, C.F. (1996). Matrix Computations. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Harman, H.H. (1976). Modern Factor Analysis. Chicago, IL: The University of Chicago Press.Google Scholar
Jain, A.K., Murty, M.N. & Flynn, P.J. (1999). Data clustering: A review. ACM Comput Surv 31, 264323.Google Scholar
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187200.Google Scholar
Keenan, M.R. (2009). Exploiting spatial-domain simplicity in spectral image analysis. Surf Interface Anal 41, 7987.Google Scholar
Keenan, M.R. & Kotula, P.G. (2003). Apparatus and system for multivariate spectral analysis. U.S. Patent # 6,584,413.Google Scholar
Keenan, M.R. & Kotula, P.G. (2004). Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf Interface Anal 36, 203212.Google Scholar
Kotula, P.G., Keenan, M.R. & Michael, J.R. (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9, 117.CrossRefGoogle ScholarPubMed
MacRae, C.M., Wilson, N.C., Torpy, A., Rossek, U. & Rohde, M. (2007). The holistic approach to data collection and hyperspectral analysis. Microsc Microanal 13(S2), 13581359 (CD-ROM).Google Scholar
Malinowski, E.R. (2002). Factor Analysis in Chemistry. New York: John Wiley and Sons, Inc.Google Scholar
Ohlhausen, J.A.T., Keenan, M.R., Kotula, P.G. & Peebles, D.E. (2004). Multivariate statistical analysis of time-of-flight secondary ion mass spectrometry images using AXSIA. Appl Surf Sci 231-232, 230234.Google Scholar
Pownceby, M.I., MacRae, C.M. & Wilson, N.C. (2007). Mineral characterisation by EPMA mapping. Miner Eng 20, 444451.Google Scholar
Smentkowski, V.S., Keenan, M.R., Ohlhausen, J.A. & Kotula, P.G. (2005). Multivariate statistical analysis of concatenated time-of-flight secondary ion mass spectrometry spectral images. Complete description of the sample with one analysis. Anal Chem 77, 15301536.Google Scholar
Smentkowski, V.S., Ohlhausen, J.A., Kotula, P.G. & Keenan, M.R. (2004). Multivariate statistical analysis of time-of-flight secondary ion mass spectrometry images—Looking beyond the obvious. Appl Surf Sci 231-232, 245249.Google Scholar
Tauler, R., Kowalski, B. & Fleming, S. (1993). Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Anal Chem 65, 20402047.Google Scholar
Van Benthem, M.H. & Keenan, M.R. (2004). Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J Chemom 18, 441450.Google Scholar
Vekemans, B., Vincze, L., Brenker, F.E. & Adams, F. (2004). Processing of three-dimensional microscopic X-ray fluorescence data. J Anal At Spectrom 19, 13021308.Google Scholar
Vosough, M., Mason, C., Tauler, R., Jalali-Heravi, M. & Maeder, M. (2006). On rotational ambiguity in model-free analyses of multivariate data. J Chemom 20, 302310.Google Scholar
Wilson, N.C. & MacRae, C.M. (2005). An automated hybrid clustering technique applied to spectral data sets. Microsc Microanal 11(S2), 434435 (CD-ROM).Google Scholar
Wold, S., Esbensen, K. & Geladi, P. (1987). Principal component analysis. Chemom Intell Lab Syst 2, 3752.Google Scholar
Xu, R. & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Trans Neural Networks 16, 645678.CrossRefGoogle ScholarPubMed
Yan, B., McJunkin, T.R., Stoner, D.L. & Scott, J.R. (2006). Validation of fuzzy logic method for automated mass spectral classification for mineral imaging. Appl Surf Sci 253, 20112017.Google Scholar