Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T05:34:04.891Z Has data issue: false hasContentIssue false

WEATHER, BEHAVIOUR AND INSECT DISPERSAL

Published online by Cambridge University Press:  31 May 2012

Michael L. McManus*
Affiliation:
Center for Biological Control of Northeastern Forest Insects and Diseases, Hamden, Connecticut, U.S.A. 06514
Get access

Abstract

Individual meteorological factors, particularly temperature and wind, directly influence the dispersal of arthropods, as do weather systems — formation and movement of air masses, cold and warm fronts, and air flows associated with topographical features such as mountains, valleys, bodies of water. Models have been recently developed that simulate the effects of many of these systems on airborne dispersal of insects. Also, some attention has recently been directed toward the behaviour of arthropods during weather conducive to dispersal. Clearly, both winged and wingless forms of arthropods respond to certain stimuli for dispersal and behave specifically to enhance the potential for migration. Recent progress toward understanding the interplay between insect movement and mesoscale weather is particularly relevant to pest management.

Résumé

Certains facteurs météorologiques, en particulier la température, et le vent, influencent directement la dispersion des arthropodes, tout comme les systèmes météorologiques : la formation et le mouvement des masses d'air, les fronts chauds et froids, et les déplacements d'air liés à la topographie des montagnes, des vallées et des masses d'eau. Des modèles récemment élaborés simulent les effets de plusieurs de ces systèmes sur la dispersion des insectes par la voie des airs. De plus, on s'est intéressé au comportement des arthropodes en réponse aux conditions météorologiques qui suscitent la dispersion. Il apparaît clairement que des arthropodes aussi bien ailés qu'aptères réagissent à certains stimulis par la dispersion et se comportent spécifiquement de façon à amplifier leur potentiel de migration. Les progrès récents de la compréhension des interactions entre les déplacements des insectes et la météo sont particulièrement pertinents en lutte intégrée.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amano, K. 1985. Statistical analyses of the influence of meteorological factors on flight activity of female tabanids. Ent. Soc. Japan 53: 161172.Google Scholar
Andrewartha, H.G., and Birch, L.C.. 1954. The Distribution and Abundance of Animals. Univ. Chicago Press, Chicago. 782 pp.Google Scholar
Arthur, A.P., and Bauer, D.J.. 1981. Evidence of the northerly dispersal of the sunflower moth by warm winds. Environ. Ent. 10: 528533.Google Scholar
Baltensweiler, W., and Fischlin, A.. 1979. The role of migration for the population dynamics of the larch bud moth, Zeiraphera diniana Gn. (Lep. Tortricidae). Bull. Soc. ent. Suisse 52: 169179.Google Scholar
Barbosa, P., and Capinera, J.L.. 1978. Population quality, dispersal, and numerical change in the gypsy moth, Lymantria dispar (L.) Oecologia (Berlin) 36: 203209.Google Scholar
Batzer, H.O. 1968. Hibernation site and dispersal of spruce budworm larvae as related to damage of sapling balsam fir. J. econ. Ent. 61: 216220.Google Scholar
Bergh, J.E. 1978. Conceivable effects by atmospheric electricity on insect activity with description of a method of recording spontaneous flight activity in large insects. Nor. J. Ent. 25: 112114.Google Scholar
Bergh, J.E. 1979. Electromagnetic activity in the VLF range and take-off by locusts. Int. J. Biometeorol. 23: 195204.Google Scholar
Blackadar, A.K. 1957. Boundary layer wind maxima and their significance for growth of nocturnal inversions. Bull. Am. meteorol. Soc. 38: 283290.Google Scholar
Blau, W.S., and Stinner, R.E.. 1983. Temporal flight patterns in the Mexican bean beetle (Coleoptera: Coccinellidae) and their relation to weather. Environ. Ent. 12: 10471054.Google Scholar
Blackwall, J. 1827. Observations and experiments, made with a view to ascertain the means by which the spiders that produce gossamer affect their aerial excursions. Trans. Linn. Soc. Lond. 15: 449459.Google Scholar
Boiteau, G. 1986. Diurnal flight periodicities and temperature thresholds for three potato-colonizing aphids (Homoptera: Aphididae) in New Brunswick. Ann. Ent. Soc. Am. 79: 989993.Google Scholar
Broadbent, L. 1949. Factors affecting the activity of alatae of the aphids Myzus persicae (Sulzer) and Brevicoryne brassicae (L.) Ann. Appl. Biol. 36: 4062.Google Scholar
Brown, C.E. 1965. Mass transport of forest tent caterpillar moths, Malacasoma disstria by a cold front. Can. Ent. 97: 10731075.Google Scholar
Browning, K. A. 1981. Ingestion of insects by intense convective updraughts. Antenna 5: 1417.Google Scholar
Burgess, A.F. 1913. The dispersion of the gypsy moth. U.S. Dep. Agric. Bur. Ent. Bull. 119. 62 pp.Google Scholar
Chamberlain, W.F. 1984. Dispersal of horn flies. 3: Effect of environmental factors. Southwestern Ent. 9: 7378.Google Scholar
Chambers, R.J., Wellings, P.W., and Dixon, A.F.G.. 1985. Sycamore aphid numbers and population density. 2: some processes. J. Anim. Ecol. 54: 425442.Google Scholar
Clark, D.P. 1969. Night flights of the Australian plague locust Chortoicetes terminifera Walk. in relation to storms. Aust. J. Zool. 17: 329352.Google Scholar
Cockbain, A.J. 1961. Low temperature thresholds for flight in Aphis fabae Scop. Ent. Exp. Appl. 4: 211219.Google Scholar
Collins, C.W. 1915. Dispersion of gypsy moth larvae by the wind. U.S. Dep. Agric. Tech. Bull. 273. 23 pp.Google Scholar
Collins, C.W., and Baker, W.L.. 1934. Exploring the upper air for wind-borne gypsy moth larvae. J. econ. Ent. 27: 320327.Google Scholar
Coster, J.E., and Gara, R.I.. 1968. Studies on the attack behaviour of the southern pine beetle. 2: response to attractive host material. Contrib. Boyce Thompson Inst. 24: 6976.Google Scholar
Cox, D.L., and Potter, D.A.. 1986. Aerial dispersal behaviour of larval bagworms, Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). Can. Ent. 118: 525536.Google Scholar
Coyle, F.A. 1983. Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae). J. Arachnol. 11: 283286.Google Scholar
Coyle, F.A., Greenstone, M.H., Hultsch, A., and Morgan, C.E.. 1985. Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araneae: Atypidae, Ctenizidae). J. Arachnol. 13: 291296.Google Scholar
Dixon, A.F.G. 1985. Aphid Ecology. Blackie, Glasgow.Google Scholar
Dixon, A.F.G., and Mercer, D.R.. 1983. Flight behaviour in the Sycamore aphid: factors affecting take-off. Ent. Exp. Appl. 33: 4349.Google Scholar
Domino, R.P., Showers, W.B., Taylor, S.E., and Shaw, R.H.. 1983. Spring weather pattern associated with suspected black cutworm moth (Lepidoptera: Noctuidae) introduction to Iowa. Environ. Ent. 12: 18631872.Google Scholar
Drake, V.A. 1984. The vertical distribution of macro-insects migrating in the nocturnal boundary layer: A radar study. Boundary-layer Meteorol. 28: 353374.Google Scholar
Drake, V.A. 1985. Radar observations of moths migrating in a nocturnal low-level jet. Ecol. Ent. 10: 259265.Google Scholar
Dry, W.W., and Taylor, L.R.. 1970. Light and temperature thresholds for take-off by aphids. J. Anim. Ecol. 39: 493504.Google Scholar
Duelli, P. 1984. Flight dispersal, migration (Chrysopidae). Series Ent. 27: 110116.Google Scholar
Duffey, E. 1956. Aerial dispersion in a known spider population. J. Anim. Ecol. 25: 85111.Google Scholar
Edwards, D.K. 1960. Effects of artificially produced atmospheric electrical fields upon the activity of some adult Diptera. Can. J. Zool. 38: 899912.Google Scholar
Edwards, D.K. 1961. Activity of two species of Calliphora (Diptera) during barometric pressure changes of natural magnitude. Can. J. Zool. 39: 623635.Google Scholar
Farrow, R.A. 1984. Detection of transoceanic migration of insects to a remote island in the Coral Sea, Willis Island. Aust. J. Ecol. 9: 253272.Google Scholar
Farrow, R.A., and Dowse, J.E.. 1984. Method of using kites to carry tow nets in the upper air for sampling migrating insects and its application to radar entomology. Bull. ent. Res. 74: 8795.Google Scholar
Fleschner, C.A., Badgley, M.E., Ricker, D.W., and Hall, J.C.. 1956. Air drift of spider mites. J. econ. Ent. 49: 624627.Google Scholar
Freeman, J.A. 1945. Studies in the distribution of insects by aerial currents. The insect population of the air from ground level to 300 feet. J. Anim. Ecol. 14: 128154.Google Scholar
Gerhardt, J.R. 1962. An example of a nocturnal low-level jet stream. J. Atmos. Sci. 19: 116118.Google Scholar
Glick, P.A. 1939. The distribution of insects, spiders, and mites in the air. U.S. Dep. Agric. Tech. Bull. 673. 150 pp.Google Scholar
Glick, P.A. 1942. Insect population and migration in the air. pp. 8898in Moulton, S. (Ed.), Aerobiology, Am. Assoc. Adv. Sci. Washington, D.C. A.A.A.S. Publ. 17.Google Scholar
Greenbank, D.O. 1957. The role of climate and dispersal in the initiation of outbreaks of the spruce budworm in New Brunswick. 2: the role of dispersal. Can. J. Zool. 35: 385403.Google Scholar
Greenbank, D.O., Schaefer, G.W., and Rainey, R.C.. 1980. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem. ent. Soc. Can. 110. 42 pp.Google Scholar
Greenstone, M.H. 1892. Ballooning frequency and habitat predictability in two wolf spider species (Lycosidae: Pardosa). Fla. Ent. 65: 8389.Google Scholar
Haggis, M.J. 1979. African armyworm Spodoptera exempta (Walker) (Lepidoptera: Noctuidae) and wind convergence in the Kenya Rift Valley, May 1970. E. Africa Agric. For. J. 44: 332346.Google Scholar
Haggis, M.J. 1981. Spatial and temporal changes in the distribution of eggs of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) on cotton in the Sudan Gezira. Bull. ent Res. 71: 183193.Google Scholar
Haine, E. 1955. Aphid take-off in controlled wind speeds. Nature (Lond.) 175: 474475.Google Scholar
Hardy, A.C., and Milne, P.S.. 1937. Insect drift over the North Sea. Nature (Lond.) 139: 510511.Google Scholar
Hardy, A.C., 1938a. Studies in the distribution of insects by aerial currents: experiments in aerial tow netting from kites. J. Anim. Ecol. 7: 199229.Google Scholar
Hardy, A.C., 1938b. Aerial drift of insects. Nature (Lond.) 141: 602603.Google Scholar
Hefter, J.L. 1980. Air resources laboratories atmospheric transport and dispersion model. N.O.O.A. Tech. Mem. ERL. ARL-81, Silver Springs, Maryland.Google Scholar
Hefter, J.L., and Taylor, A.D.. 1975. A regional-continental scale transport diffusion, and deposition model. 1: Trajectory model. N.O.O.A. Tech. Mem. ERL ARL-50, Silver Springs, Maryland.Google Scholar
Hendrikse, A., and Herebout, W.M.. 1982. Influence of wind velocity on flight of the moth Yponomeuta cagnagellus (Hübner). Ent. Exp. appl. 32: 256261.Google Scholar
Henson, W.R. 1951. Mass flights of the spruce budworm. Can. Ent. 83: 240.Google Scholar
Hoy, M.A., Groot, J.J. Rob, and van de Baan, H.E.. 1985. Influence of aerial dispersal on persistence and spread of pesticide-resistant Metaseiulus occidentalis in California almond orchards. Ent. Exp. Appl. 37: 1731.Google Scholar
Hughes, R.D. 1979. Movement in population dynamics. pp. 14–34 in Rabb, R.L., and Kennedy, G.G. (Eds.), Movements of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh. 455 pp.Google Scholar
Johnson, C.G. 1951. The study of windborne insect populations in relation to terrestial ecology, flight periodicity and the estimation of aerial populations. Sci. Prog. 39: 4162.Google Scholar
Johnson, C.G. 1954. Aphid migration in relation to weather. Biol. Rev. 29: 87118.Google Scholar
Johnson, C.G. 1969. Migration and dispersal of insects by flight. Methuen, London. 763 pp.Google Scholar
Johnson, C.G., Taylor, L.R., and Haine, E.. 1957. The analysis and reconstruction of diurnal flight curves in alienicolae of Aphis fabae Scop. Ann. Appl. Biol. 45: 682701.Google Scholar
Johnson, D.T., and Croft, B.A.. 1976. Laboratory study of the dispersal behavior of Amblyseius fallacis (Acarina: Phytoseiidae). Ann. ent. Soc. Am. 69: 10191023.Google Scholar
Joyce, R.J.V. 1983. Aerial transport of pests and pest outbreaks. EPPO Bull. 13: 111119.Google Scholar
Kaae, R.S., and Shorey, H.H.. 1972. Sex pheromones of noctuid moths. 27: influence of wind velocity on sex pheromone releasing behaviour of Trichoplusia ni females. Ann. ent. Soc. Am. 65: 436440.Google Scholar
Kaae, R.S., and Shorey, H.H.. 1973. Sex pheromones of Lepidoptera. 44: influence of environmental conditions on the location of pheromone communication and mating in Pectinophora gossypiella. Environ. Ent. 2: 10811084.Google Scholar
Kennedy, J.S. 1951. The migration of the desert locust (Schistocerca gregaria Forsk.). Phil. Trans. R. Soc. Land. B. 235: 163290.Google Scholar
Kennedy, J.S. 1956. Phase transformation in locust biology. Biol. Rev. 31: 349370.Google Scholar
Kennedy, J.S. 1961. A turning point in the study of insect migration. Nature (Lond.) 189: 785791.Google Scholar
Kennedy, J.S. 1965. Co-ordination of successive activities in an aphid. Reciprocal effects of settling on flight. J. Exp. Biol. 34: 489509.Google Scholar
Kennedy, J.S., and Booth, C.O.. 1963. Co-ordination of successive activities in an aphid. The effect of flight on the settling responses. J. Exp. Biol. 40: 351369.Google Scholar
Kieckhefer, R.W., Lythe, W.F., and Spuhler, W.. 1974. Spring movement of cereal aphids into South Dakota. Environ. Ent. 3: 347350.Google Scholar
Kring, J.B. 1972. Flight behaviour of aphids. A. Rev. Ent. 17: 461492.Google Scholar
Leonard, D.E. 1970. Intrinsic factors causing qualitative changes in populations of Porthetria dispar (Lepidoptera: Lymantriidae). Can. Ent. 102: 239249.Google Scholar
Leonard, D.E. 1971. Population quality, pp. 720in Toward Integrated Control. U.S. Dep. Agric. For. Serv. Res. Pap. NE-194.Google Scholar
Mason, C.J., and McManus, M.L.. 1981. Larval dispersal of the gypsy moth. pp. 161–202, Chapter 4 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research toward Integrated Pest Management. U.S. Dep. Agric. Tech. Bull. 1584. 757 pp.Google Scholar
McManus, M.L. 1973. The role of behaviour in the dispersal of newly-hatched gypsy moth larvae. U.S. Dep. of Agric., For. Serv. Res. Pap. NE-267.Google Scholar
McManus, M.L., and Mason, C.J.. 1983. Determination of the settling velocity and its significance to larval dispersal of the gypsy moth (Lepidoptera: Lymantriidae). Environ. Ent. 12: 270272.Google Scholar
Miller, G.L. 1983. Ballooning in Geolycosa turricola (Treat) and Geolycosa patellonigra Wallace: high dispersal frequencies in stable habitats. Can. J. Zool. 62: 21102111.Google Scholar
Mitchell, R. 1970. An analysis of dispersal in mites. Am. Nat. 104: 425431.Google Scholar
Mitchell, T.G. 1979. Dispersal of early instars of Douglas-fir Tussock moth. Ann. ent. Soc. Am. 72: 291297.Google Scholar
Mizutani, M. 1984. The influences of weather and moonlight on the light trap catches of moths. Appl. Ent. Zool. 19: 133141.Google Scholar
Muller, R.A. 1979. Synoptic weather types along the central Gulf Coast: variability and predictability, pp. 133–146 in Rabb, R.L., and Kennedy, G.G. (Eds.), Movement of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh. 455 pp.Google Scholar
Pedgley, D.E., Ed. 1981. Desert locust forecasting manual. Centre for Overseas Pest Res., vol. 1, 268 pp.; vol. 2., 142 pp.Google Scholar
Pedgley, D.E., Ed. 1982. Windbome pests and diseases, meteorology of airborne organisms. Ellis Horwood Ltd., Chichester, U.K. 250 pp.Google Scholar
Pedgley, D.E., Ed. 1983. Windborne spread of insect-transmitted diseases of animals and man. Phil. Trans. R. Soc. Lond. B. 302: 463470.Google Scholar
Perumpral, J.V., Earp., U.V., and Stanley, J.M.. 1978. Effects of electrostatic field on locational preference of houseflies and flight activities of cabbage loopers. Environ. Ent. 7: 482486.Google Scholar
Plagens, M.J. 1986. Aerial dispersal of spiders (Araneae) in a Florida cornfield ecosystem. Environ. Ent. 15: 12251233.Google Scholar
Rabb, R.L., and Kennedy, G.G., Eds. 1979. Movement of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh. 455 pp.Google Scholar
Rainey, R.C. 1951. Weather and the movements of locust swarms: a new hypothesis. Nature (Lond.) 168: 10571060.Google Scholar
Rainey, R.C. 1957. Biometeorology and the displacements of airborne insects. Int. Soc. Bioclimatol. Biometeorol. 3:B. 15.Google Scholar
Rainey, R.C. 1963. Meteorology and the migration of desert locusts: application of synoptic meteorology in locust control. W.M.O. Tech. Note 54. 117 pp.Google Scholar
Rainey, R.C. 1974. Biometeorology and insect flight — some aspects of energy exchange. A. Rev. Ent. 19: 407439.Google Scholar
Rainey, R.C. 1976. Flight behaviour and features of the atmospheric environment. pp. 75112in Rainey, R.C. (Ed.), Insect Flight. Blackwell Scientific Publications, Oxford.Google Scholar
Rainey, R.C. 1979a. Dispersal and redistribution of some Orthoptera and Lepidoptera. Bull. Soc. ent. Suisse 52: 125131.Google Scholar
Rainey, R.C. 1979b. Interactions between weather systems and populations of locusts and noctuids in Africa. pp. 109–119 in Rabb, R.L., and Kennedy, G.G. (Eds.), Movement of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh. 455 pp.Google Scholar
Rainey, R.C. 1983. Exploration of wind fields for flying insects. E.P.P.O. Bull. 13: 121124Google Scholar
Rainey, R.C., and Joyce, R.J.V.. 1972. The use of airborne doppler equipment in monitoring windfields for airborne insects. Paper prepared for the seventh international aerospace instrumentation symposium, Cranfield, 1–4 August.Google Scholar
Ramchandra Rao, Y. 1942. Some results of studies on the desert locust (Schistocerca gregaria, Forsk.) in India. Bull. ent. Res. 33: 241265.Google Scholar
Rankin, M.A., and Singer, M.C.. 1984. Insect movement: mechanisms and effects, pp. 185216in Huffaker, C.B., and Rabb, R.L. (Eds.), Ecological Entomology. John Wiley, New York.Google Scholar
Raulston, J.R., Wolf, W.W., Lingren, P.D., and Sparks, A.N.. 1982. Migration as a factor in Heliothis management. pp. 6173in Reed, W. (Ed.), Proc. Intl. Workshop Heliothis Management. ICRISAT, Patancheru, India.Google Scholar
Rautapaa, J. 1976. Population dynamics of cereal aphids and method of predicting population trends. Ann. Agric. Fenn. 15: 272293.Google Scholar
Reap, R.M. 1972. An operational three dimensional trajectory model. J. Appl. Meteorol. 11: 11931202.Google Scholar
Reap, R.M. 1978. Techniques Development Laboratory: Three Dimensional Trajectory model. U.S. Dep. Commerce, N.O.A.A. Natl. Weather Service. Tech. Procedures Bull. 225. 13 pp.Google Scholar
Richter, C.J. 1970. Aerial dispersal in relation to habitat in eight wolf spider species (Pardosa, Araneae, Lycosidae). Oecologia (Berlin) 5: 200214.Google Scholar
Riley, J.R., Reynolds, D.R., and Farmery, M.J.. 1983. Observations of the flight behaviour of the armyworm moth, Spodoptera exempta, at an emergence site using radar and infrared optical techniques. Ecol. Ent. 8: 395418.Google Scholar
Riordan, A.J. 1979. Density and availability of meteorological data and their use in illustrating long-range transport in the southeastern United States, pp. 120–146 in Rabb, R.L., and Kennedy, G.G. (Eds.), Movement of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh. 455 pp.Google Scholar
Rose, D.J.W., and Dewhurst, C.F.. 1979. The African armyworm, Spodoptera exempta—congregation of moths in trees before flight. Ent. Exp. Appl. 26: 346348.Google Scholar
Rose, D.J.W., Page, W.W., Dewhurst, C.F., Riley, J.R., Reynolds, D.R., Pedgley, D.E., and Tucker, M.R.. 1985. Downwind migration of the African armyworm moth, Spodoptera exempta, studied by mark-and-capture and by radar. Ecol. Ent. 10: 299313.Google Scholar
Schaefer, G.W. 1969. Radar studies of locusts, moths, and butterfly migration in the Sahara. Proc. R. ent. Soc. Land. C. 34: 33, 3940.Google Scholar
Schaefer, G.W. 1976. Radar observations of insect flight, pp. 157–197 in Rainey, R.C. (Ed.), Insect Flight. Blackwell Scientific Publications, Oxford.Google Scholar
Schaefer, G.W. 1979. An airborne radar technique for the investigation and control of migrating pest insects. Phil. Trans. R. Soc. Lond. B. 287: 459465.Google Scholar
Service, M.W. 1980. Effects of wind on the behaviour and distribution of mosquitoes and blackflies. Int. J. Biometeorol. 24: 347353.Google Scholar
Shaw, M.W. 1970. Effects of population density on alienicolae of Aphis fabae Scop. 2: the effects of crowding on the expression of migratory urge among Alatae in the laboratory. Ann. Appl. Biol. 65: 197203.Google Scholar
Slade, D.H. Ed. 1968. Meteorology and atomic energy. U.S. Atomic Energy Comm. Div. Tech. Inf. TID 24190. 445 pp.Google Scholar
Smitley, D.R., and Kennedy, G.G.. 1985. Photo-oriented aerial dispersal behaviour of Tetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface. Ann. ent. Soc. Am. 78: 609614.Google Scholar
Southwood, T.R.E. 1962. Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 37: 171214.Google Scholar
Suski, Z.W., and Naegele, J.A.. 1966. Light response in the two spotted spider mite. 2: Behaviour of the sedentary and dispersal phases. Recent Adv. Acarol., Cornell University Press, Ithaca, NY.Google Scholar
Taylor, L.R. 1958. Aphid dispersal and diurnal periodicity. Proc. Linn. Soc. Lond. 169: 6773.Google Scholar
Taylor, L.R. 1963. Analysis of the effect of temperature on insects in flight. J. Anim. Ecol. 32: 99117.Google Scholar
Taylor, L.R. 1965. Flight behaviour and aphid migrations. Proc. N.C. Br. ent. Soc. Am. 20: 919.Google Scholar
Taylor, L.R. 1974. Insect migration, flight periodicity, and the boundary layer. J. Anim. Ecol. 43: 225238.Google Scholar
Taylor, R.A.J., and Reling, D.. 1986. Density/height profile and long-range dispersal of first-instar gypsy moth (Lepidoptera: Lymantriidae). Environ. Ent. 15: 431435.Google Scholar
Teraguchi, S.E. 1986. Migration patterns of leaf hoppers (Homoptera: Cicadellidae) in an Ohio old field. Environ. Ent. 15: 11991211.Google Scholar
Uvarov, B.P. 1929. Weather and climate in their relation to insects. Conf. Empire Meteorol., Agric. Sect. 2: 130146.Google Scholar
Uvarov, B.P. 1931. Insects and climate. Trans. ent. Soc. Lond. 79: 1247.Google Scholar
VanWoerkom, G.J., Turpin, F.T., and Barrett, R.J. Jr. 1983. Wind effect on western corn rootworm (Coleoptera: Chrysomelidae) flight behaviour. Environ. Ent. 12: 196200.Google Scholar
Vaughn, C.R., Wolf, W., and Klassen, W., Eds. 1978. Radar, insect population ecology and pest management. N.A.S.A. Conf. Publ. 2070. 248 pp.Google Scholar
Vogt, W.G., Woodburn, T.L., Morton, R., and Ellem, B.A.. 1985. The influence of weather and time of day on trap catches of males and females of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull. ent. Res. 75: 315319.Google Scholar
Wallin, J.R., and Loonan, D.V.. 1971. Low-level jet winds, aphid vectors, local weather and barley yellow dwarf virus outbreak. Phytopathology 61: 10681070.Google Scholar
Walters, K.F.A., and Dixon, A.F.G.. 1982. The effect of host quality and crowding on the settling and take-off of cereal aphids. Ann. Appl. Biol. 101: 211218.Google Scholar
Walters, K.F.A., and Dixon, A.F.G.. 1983. Migratory urge and reproductive investment in aphids: variation within clones. Oecologia 58: 7075.Google Scholar
Walters, K.F.A., and Dixon, A.F.G.. 1984. The effect of temperature and wind on the flight activity of cereal aphids. Ann. Appl. Biol. 104: 1726.Google Scholar
Washburne, J.O., and Washburne, L.. 1984. Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients. Science 223: 10881089.Google Scholar
Watson, M.A., and Plumb, R.T.. 1972. Transmission of plant-pathogenic viruses by aphids. A. Rev. Ent. 17: 425452.Google Scholar
Wellington, W.G. 1945a. Conditions governing the distribution of insects in the free atmosphere. 1: atmospheric pressure, temperature, and humidity. Can. Ent. 11: 715.Google Scholar
Wellington, W.G. 1945b. Conditions governing the distribution of insects in the free atmosphere. 2: surface and upper winds. Can. Ent. 11: 2128.Google Scholar
Wellington, W.G. 1945c. Conditions governing the distribution of insects in the free atmosphere 3: thermal convection. Can. Ent. 77: 4449.Google Scholar
Wellington, W.G. 1945d. Conditions governing the distribution of insects in the free atmosphere. 4: distribution processes of economic significance. Can. Ent. 11: 6974.Google Scholar
Wellington, W.G. 1954. Atmospheric circulation processes and insect ecology. Can. Ent. 86: 312333.Google Scholar
Wellington, W.G. 1957. The synoptic approach to studies of insects and climate. A. Rev. Ent. 2: 143162.Google Scholar
Wellington, W.G. 1975. Applying behavioural studies in entomological problems, pp. 87–97 in Anderson, J.F., and Kaya, H.Y. (Eds.), Perspectives in Forest Entomology. Academic Press, New York. 428 pp.Google Scholar
Wellington, W.G. 1979. Insect dispersal: a biometeorological perspective, pp. 104–108 in Rabb, R.L., and Kennedy, G.G. (Eds.), Movement of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh. 455 pp.Google Scholar
Wellington, W.G. 1980. Dispersal and population change, pp. 1124in Berryman, A.A., and Safranyik, L. (Eds.), Dispersal of Forest Insects: Evaluation, Theory, and Management Implications. Cooperative Extension Service Washington State Univ., Pullman.Google Scholar
Wellington, W.G. 1983. Biometeorology of insect dispersal. Bull. ent. Soc. Am. 29: 2429.Google Scholar
Wellington, W.G., and Trimble, R.M.. 1984. Weather, pp. 399445in Huffaker, C.B., and Rabb, R.L. (Eds.), Ecological Entomology. John Wiley, New York.Google Scholar
Wiktelius, S. 1981. Diurnal flight periodicities and temperature thresholds for flight for different migrant forms of Rhopalosiphum padi. (Hom. Aphididae) Z. angnew Ent. 92: 449457.Google Scholar
Wiktelius, S. 1982. Flight and settling behaviours of Rhopalosiphum padi (L.) Hemiptera: Aphididae. Bull. ent. Res. 72: 157163.Google Scholar
Wiktelius, S. 1984. Long range migration of aphids into Sweden. Int. J. Biometeorol. 28: 185200.Google Scholar
Williams, C.B. 1940. The analysis of four years captures of insects in a light trap. 2: the effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population. Trans. R. ent. Soc. Lond. 90: 227306.Google Scholar
Williams, D.T. 1960. A method for computing small-scale divergence along a windshift line. Bull. Am. meteorol. Soc. 41: 383385.Google Scholar