Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T02:08:24.030Z Has data issue: false hasContentIssue false

FIELD AND LABORATORY EVALUATIONS OF LEADING ENTOMOPATHOGENIC FUNGI ISOLATED FROM LOCUSTA MIGRATORIA CAPITO SAUSS IN MADAGASCAR

Published online by Cambridge University Press:  31 May 2012

F.X. Delgado
Affiliation:
Department of Entomology, Montana State University, Bozeman, Montana, USA 59717
J.H. Britton
Affiliation:
Department of Entomology, Montana State University, Bozeman, Montana, USA 59717
M.L. Lobo-Lima
Affiliation:
Department of Entomology, Montana State University, Bozeman, Montana, USA 59717
E. Razafindratiana
Affiliation:
Department of Entomology, Montana State University, Bozeman, Montana, USA 59717
W. Swearingen
Affiliation:
Department of Entomology, Montana State University, Bozeman, Montana, USA 59717
Get access

Abstract

Three leading entomopathogens isolated from Madagascar's migratory locust, Locusta migratoria capito Sauss, were evaluated in field and laboratory tests. In a field trial in Madagascar in 1994, two isolates of Metarhizium flavoviride Gams and Rozsypal (SP3 and SP9) and an isolate of Beauveria bassiana (Balsamo) Vuillemin (SP16) were tested against L. migratoria capito. Locusts from field plots treated with SP9 experienced 100% mortality in 8 days, a higher death rate than that found in locusts treated with M. flavoviride SP3 or B. bassiana SP16. However, locusts treated with M. flavoviride SP3 or B. bassiana SP16 had significantly higher mortality than did the untreated controls. In separate field and laboratory trials in Cape Verde in 1994, SP9 was also tested against the Senegalese grasshopper, Oedaleus senegalensis Krauss. Oedaleus senegalensis treated in small-scale field plots with SP9 experienced 100% mortality in 8 days, a significantly higher death rate than that of the untreated controls. An extensive laboratory bioassay with SP9 revealed a dose–response for rate of mortality to O. senegalensis. Results from these trials in Madagascar and Cape Verde suggest that one or more of the Malagasy strains evaluated have good potential for biocontrol of locusts and grasshoppers.

Résumé

Trois entomopathogènes isolés chez le Criquet migrateur malgache, Locusta migratoria capito Sauss, et utilisés couramment ont fait l'objet d'évaluations en laboratoire et sur le terrain. Au cours d'une expérience en nature à Madagascar en 1994, deux isolats de Metarhizium flavoviride Gams et Rozsypal (SP3 et SP9) et un isolat de Beauveria bassiana (Balsamo) Vuillemin (SP16) ont été éprouvés contre le Criquet migrateur malgache. Les criquets capturés dans des grilles échantillons sur le terrain et traités au moyen de SP9 ont enregistré une mortalité de 100% au bout de 8 jours, un taux de mortalité plus élevé que celui enregistré chez des criquets traités au moyen de M. flavoviride SP3 ou de B. bassiana SP16. Cependant, les criquets traités au M. flavoviride SP3 ou au B. bassiana SP16 avaient des taux de mortalité significativement plus élevés que ceux de criquets témoins non traités. Au cours d'autres tests en nature et en laboratoire à Cap-Vert en 1994, le SP9 a également été éprouvé contre le Criquet sénégalais Oedaleus senegalensis Krauss. Des O. senegalensis traités au SP9 sur de petites parcelles de terrain en nature ont enregistré une mortalité de 100% après 8 jours, un taux de mortalité significativement plus élevé que celui enregistré chez les criquets témoins non traités. Une expérience d'envergure en laboratoire sur le SP9 a révélé que le taux de mortalité opéré sur O. senegalensis dépend de la dose utilisée. Les résultats des expériences à Madagascar et à Cap-Vert semblent indiquer que l'une ou plusieurs des souches Malagasy évaluées sont probablement de bons agents de lutte biologique contre les criquets. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Mycotech Corporation, Butte, Montana, USA 59701.

2

GTZ/Crop Protection Biocontrol Laboratory, Antananarivo, Madagascar

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.Google Scholar
Baker, G.L., Milner, R.J., Lutton, G.G. and Watson, D.M.. 1994. Preliminary field trial on the control of Phaulacridium vittatum (Sjöstedt) (Orthoptera: Acrididae) populations with Metarhizium flavoviride Gams and Rozsypal (Deuteromycetina: Hyphomycetes). Journal of the Australian Entomological Society 33: 190192.Google Scholar
Balmat, M. 1993. Lutte antiacridienne. Unpublished report for the Food and Agriculture Organization of the United Nations (FAO).Google Scholar
Bateman, R.P., Carey, M., Moore, D. and Prior, C.. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulation to desert locusts at low humidities. Annals of Applied Biology 122: 145152.Google Scholar
Delgado, F.X. 1991. Protocols, figures from data, and portions of that data analyses for field trials of Beauveria bassiana in Montana. Attachment VII. Final Report: Biological Control of Grasshoppers and Other Pests in Cape Verde. By J.E. Henry. Submitted to USAID-Washington, Africa Emergency Locust/Grasshopper Assistance (698–0517).Google Scholar
Delgado, F.X., Bradley, C. and Henry, J.E.. 1991. Field trials with Beauveria bassiana in Cape Verde, August 1990. Attachment VIII. Final Report: Biological Control of Grasshoppers and Other Pests in Cape Verde. By J.E. Henry. Submitted to USAID-Washington, Africa Emergency Locus/Grasshopper Assistance (698–0517).Google Scholar
Delgado, F.X., Lobo-Lima, M.L., Bradley, C., Britton, J.H., Henry, J.E. and Swearingen, W.. 1997. Laboratory and field evaluations of Beauveria bassiana (Balsamo) Vuillemin against grasshoppers and locusts in Africa. pp. 239–251 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Goettel, M.S. and Roberts, D.W.. 1992. Mass production, formulation and field application of entomopathogenic fungi, pp. 230–238 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Jaronski, S.T. and Goettel, M.S.. 1997. Development of Beauveria bassiana for control of grasshoppers and locusts pp. 225–237 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada. 171. 400 pp.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada. 171. 400 pp.Google Scholar
Marcandier, S. and Khachatourians, G.G.. 1987. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), to Beauveria bassiana (Bals.) Vuillemin (Hyphomycete): Influence of relative humidity. The Canadian Entomologist 119: 901907.Google Scholar
Moore, D., Reed, M., Le, G. Patourel, Abraham, Y.J. and Prior, C.. 1992. Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. Journal of Invertebrate Pathology 60: 304307.Google Scholar
Ostle, B. and Malone, L.C.. 1988. Statistics in Research, 4th ed. Iowa State University Press, Ames, IA.Google Scholar
SAS Institute. 1989. SAS/STAT User's Guide, version 6, 4th ed. Cary, NC.Google Scholar