Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T05:20:26.446Z Has data issue: false hasContentIssue false

EFFETS MATERNELS ET BIOLOGIE DES POPULATIONS D'INSECTES

Published online by Cambridge University Press:  31 May 2012

Vincent Labeyrie*
Affiliation:
Institut de Biocénotique expérimentale des Agrosystèmes, U.A. C.N.R.S. 340, Université de pau et des Pays de l'Adour, 64000 Pau, France
Get access

Abstract

Maternal influences on an insect population must be assessed within a numerically and spatially restricted enclave; it is difficult to demonstrate the impact within a large polymorphic group whose qualitative and quantitative evolution is subject to a number of conflicting influences. When a variety of selective factors is involved, the problem is to isolate, from the polymorphism, the portion that can be attributed to maternal effects.In short-lived organisms such as insects, direct maternal effects on the progeny have an advantage over slower, indirect responses to selective pressures. Direct effects allow progeny to adapt sooner to ecological trends that began or were operating during the parental generation. The peculiarities of insect embryonic development allow maternal influences to act directly on the F1 adults through their deferred effects on the imaginal discs. Species that deposit organized egg masses provide the best material for studying maternal effects.Behaviour at oviposition can lead to special types of progeny distributions that affect the offspring's survival. In parasitoids, for example, maternal behaviour can introduce a kind of "arena selection" generating superparasitism by aggregative oviposition.The next generation's ecological response that is produced by maternal effects is mediated by changes at the behavioural, metabolic and ovarian levels during the mother's reproductive activity. In this way, she provides a key part of the next generation's functional polymorphism.

Résumé

Pour déterminer les influences de la mère, ou effets maternels, sur les populations d'insectes, il faut dénombrer ces populations et délimiter l'aire qu'elles occupent. Autrement, il est difficile de mettre en évidence ces effets dans des ensembles polymorphes dont l'évolution qualitative et quantitative est soumise à de nombreuses influences contradictoires. Toute évolution des effectifs impliquant des actions sélectives, le problème est d'évaluer la part de polymorphisme introduite par des influences subies par la mère.Comme la vie des insectes est généralement brève, l'intérêt des effets maternels est de permettre aux larves de s'adapter plus rapidement à des fluctuations écologiques déjà sensibles pour la génération parentale. Les particularités du développement embryonnaire des insectes permettent même à l'influence maternelle de s'exercer directement sur les adultes de F1, puisque les disques imaginaux correspondent à des tissus embryonnaires à développement retardé. Les espèces aux pontes massives et ordonnées offrent un matériel de choix pour l'étude des effets maternels.D'une façon plus générale, la mère assure souvent la coïncidence spatiale de la descendance des holométaboles. Le destin est alors prédéterminé par le comportement maternel, qui peut même, chez les espèces au développement larvaire parasitaire, introduire une « sélection en arène » par un comportement de ponte agrégatif, générateur de superparasitisme.La modulation écologique différée, révélée par les effets maternels, intervient au niveau du comportement, de la régulation psychosomatique et sur l'ovogenèse. Son évolution au cours de l'activité reproductrice de la mère est une source importante du polymorphisme de la nouvelle génération.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Andrewartha, H.G. 1961. Introduction to the study of animal populations. Methuen, London.Google Scholar
Anxolabéhère, D. 1980. Sélection dépendant de la fréquence et durée de développement embryonnaire chez D. melanogaster. Genetica 1: 161165.Google Scholar
Bakker, K. 1970. Some general remarks on the concepts “population” and “regulation.” Proc. Adv. Study Inst. Dynamics Numbers Popul. 565567.Google Scholar
Baltensweiler, W. 1958. Zur Kenntnis der Parasiten des Grauen Larchenwicklers (Zeiraphera griseana Hüb.) im Oberengadin. Mitt, schweiz. Anst. forstl. VersWes. 34: 399478.Google Scholar
Baltensweiler, W. 1964. Zeiraphera griseana Hüb. (Lep.: Tortr.) in the European Alps. A contribution to the problem of cycles. Can. Ent. 96: 792800.Google Scholar
Benz, G. 1962. Untersuchungen über die Pathogenität eines Granulosis-Virus des Grauen Lärchenwicklers Zeiraphera diniana Guénée. Agron. Glasn. 5, 6, 7: 566574.Google Scholar
Bernard, C. 1966. Leçons sur les phénomenès de la vie communs aux animaux et aux végétaux. Vrin, Paris.Google Scholar
Birch, L.C. 1960. The genetic factor in population ecology. Am. Nat. 4: 524.Google Scholar
Birch, L.C. 1965. Evolutionary opportunities for insects and mammals in Australia, pp. 197213in Baker, H.G. et Stebbins, G.L. (Eds.), Genetics of Colonizing Species. Academic Press, New York.Google Scholar
Bocquet, C. 1969. Le problème des formes apparentées à distribution contiguë. Bull. Soc. Zool. France 94(4): 517526.Google Scholar
Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity of plants. Adv. Genetics 13: 115155.Google Scholar
Brian, M.V. 1970. Egg formation in social hymenoptera. pp. 43127in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Broadhurst, P.L. 1961. Analysis of maternal effects in the inheritance of behaviour. Anim. Behav. 9: 129141.Google Scholar
Bush, G.L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Trypetidae). Evolution 23: 237251.Google Scholar
Caldwell, R.L., et Hegmann, J.P.. 1969. Heritability of flight duration in the milkweed bug, Lygaeus kalmii. Nature, (Land.) 223: 9192.Google Scholar
Campbell, I.M. 1962. Reproductive capacity in the genus Choristoneura (Led (Lep. Tort.) 1: quantitative inheritance and genes as controllers of rates. Can. J. Genet. Cytol. 4: 272288.Google Scholar
Carayon, J. 1970. Action du sperme sur la maturation des ovaires chez les Hémiptères à insémination traumatique. pp. 215243in C.N.R.S., L'influence des stimuli externes sur la gamétogènese des insectes. C.N.R.S., Paris.Google Scholar
Cavalli-Sforza, L.L. 1974. The role of plasticity in biological and cultural evolution. Ann. N.Y. Acad. Sci. 231: 4359.Google Scholar
Chapman, R.N. 1928. The quantitative analysis of environmental factors. Ecology 9: 11122.Google Scholar
Chitty, D. 1960. Population processes in the vole and their relevance to general theory. Can. J. Zool. 38: 99113.Google Scholar
Clark, L.R., Geier, P.W., Hughes, R.D., et Morris, R.F.. 1967. The ecology of insect populations in theory and practice. Methuen, London.Google Scholar
Clausen, J. 1951. Stages in the evolution of plant species. Cornell Univ. Press, Ithaca, New York.Google Scholar
Cline, T.W. 1980. Maternal and zygotic sex-specific gene interactions in D. melanogaster. Genetics 96: 903926.Google Scholar
Davey, K.G. 1970. Copulation and oogenesis in Rhodnius prolixus. pp. 249256 in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Dethier, V.G. 1953. Host perception in phytophagous insects. Symp. Physiol. Relat. between Insects and their Host-Plants. 9th Int. Congr. Ent. 2: 8189.Google Scholar
Dethier, V.G. 1974. Sensory input and the inconstant fly. pp. 2134in Barton-Browne, (Ed.), Experimental Analysis of Insect Behaviour. Springer-Verlag, Heidelberg.Google Scholar
Dethier, V.G. 1978. Studies on insect/host plant relations — past and future. Ent. Exp. Appl. 24: 559566.Google Scholar
Dingle, H. 1978. Migration and diapause in tropical, temperate, and island milkweed bugs. pp. 254276in Dingle, H. (Ed.), Evolution of Insect Migration and Diapause. Springer-Verlag, New York.Google Scholar
Dobzhansky, T. 1970. Genetics of the evolutionary process. Columbia Univ. Press, New York.Google Scholar
Doutt, R.L. 1960. Natural enemies and insect speciation. Pan. Pac. Ent. 36: 114.Google Scholar
Downes, J.A. 1969. The swarming and mating flight of Diptera. A. Rev. Ent. 14: 271298.Google Scholar
Drooz, A.T. 1971. The elm spanworm (Lep.: Geometr.): natural diets and their effects on the F2 generation. Ann. ent. Soc. Am. 64: 331333.Google Scholar
Ehrlich, P.R., White, R.R., Singer, M.C., McKecknie, S.W., et Gilbert, L.E.. 1975. Checkerspot butterflies: a historical perspective. Science 188: 221228.Google Scholar
Engelmann, F. 1970. Stimulation of mechanoreceptors as related to reproductive activity in certain insect species. pp. 257266in C.N.R.S., L'influence de stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Faure, J.C. 1923. The life-history of the brown locust. Bull. Fac. Agric. Transvaal Univ. Coll. 4: 30.Google Scholar
Faure, J.C. 1932. The phases of locusts in South Africa. Bull. ent. Res. 23: 293405.Google Scholar
Faure, J.C. 1933. The phases of the rocky mountain locust, Melanoplus mexicanus. J. econ. Ent. 26: 706718.Google Scholar
Feeny, P.P. 1987. The roles of plant chemistry in associations between swallowtail butterflies and their host plants, pp. 353359in Labeyrie, V., Fabres, G., et Lachaise, D. (Eds.), Insects–Plants. Junk, Dordrecht, Netherlands.Google Scholar
Franz, J. 1950. Über die genetischen Grundlagen des Zusammenbruchs einer Massenvermehrung aus inneren Ursachen. Z. Angew. Ent. 31: 228260.Google Scholar
Franz, J.M., et Laux, W.. 1964. Individual differences in Malacosoma neustria L. Proc. 12th Int. Congr. Ent. 6: 393394.Google Scholar
Goth, G.J., Wellington, W.G., et Contant, H.Y.. 1983. Variation due to maternal age in the onion root maggot Hylemyia antiqua Meig. Res. Popul. Ecol. (Kyoto) 25: 366386.Google Scholar
Gould, S.J., et Lewontin, R.C.. 1979. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205: 581598.Google Scholar
Grassé, P.P. 1965. Les effets de groupe et les actions psychosomatiques chez les insectes. Proc. 12th Int. Congr. Ent. 5258.Google Scholar
Greenblatt, J.A., et Witter, J.A.. 1976. Behavioral studies on Malacosoma disstria (Lepid.: Lasiocamp.). Can. Ent. 108: 12251228.Google Scholar
Haldane, J.B.S. 1932. The causes of evolution. Longmans, London.Google Scholar
Harris, H. 1966. Enzyme polymorphism in man. Proc. R. Soc. Lond. B 164: 298316.Google Scholar
Harvey, G.T. 1977. Mean weight and rearing performances of successive egg clusters of eastern spruce bud-worm (Lepid.: Tortric). Can. Ent. 109: 487496.Google Scholar
Henrich, V.C., et Denlinger, D.L.. 1982. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28: 881884.Google Scholar
Honek, A. 1980. Maternal regulation of wing polymorphism in Pyrrhocoris apterus: effect of cold activation. Experientia 36: 418419.Google Scholar
Istock, C.A. 1978. Fitaess variation in a natural population, pp. 179190in Dingle, H. (Ed.), Evolution of Insect Migration and Diapause. Springer-Verlag, New York.Google Scholar
Iwao, S., et Wellington, W.G.. 1970. The influence of behavioral differences among tent-caterpillar larvae on predation by a pentatomid bug. Can. J. Zool. 48: 896898.Google Scholar
Jacob, F. 1982. Le jeu des possibles : essais sur la diversité du vivant. Fayard, Paris.Google Scholar
Johansson, A.S. 1964. Feeding and nutrition in reproductive process in insects. Insect Reprod. Symp., Royal Ent. Soc. London2642.Google Scholar
Joly, P. 1970. Voies physiologiques d'action des facteurs externes sur l'ovaire. pp. 401410in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Kennedy, J.S. 1961a. A turning point in the study of insect migration. Nature 189: 785791.Google Scholar
Kennedy, J.S. 1961b. Continuous polymorphism in locusts. Insect Polymorphism Symp., Royal Ent. Soc. London8090.Google Scholar
Labeyrie, V. 1960. Contribution à l'étude de la dynamique des populations d'insectes: influence stimulatrice de l'hôte, Acrolepia assectella, sur la multiplication d'un hyménoptère ichneumonide: Diadromus sp., Entomophaga 1960. Mém. hors série 1: 1193.Google Scholar
Labeyrie, V. 1961. Obtention d'une souche astime chez Acanthoscelides obtectus. C. R. Soc. Biol. 155: 13661369.Google Scholar
Labeyrie, V. 1964. Action sélective de la fréquence de l'hôte utilisable (Acrolepia assectella) sur Diadromus pulchellus : variabilité de la fecondite en fonction de la stimulation. C. R. Acad. Sci. Paris. 259: 36443647.Google Scholar
Labeyrie, V. 1970. Signification adaptative de l'intégration des signaux foumis par le milieu extérieur lors de l'ovogenèse des insectes. pp. 2143in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Labeyrie, V. 1977a. Influence de la variabilité du comportement dans la dynamique des populations d'insectes. pp. 2133in Medioni, J., et Boesiger, E. (Eds.), Mécanismes éthologiques de l'évolution. Masson, Paris.Google Scholar
Labeyrie, V. 1977b. Environnement sensoriel et coévolution des insectes. pp. 1535in Labeyrie, V. (Ed.), Comportement des insectes et milieu trophique. C.N.R.S., Paris.Google Scholar
Labeyrie, V. 1986. The plasticity of ovarian activity: how it is ecologically adjusted in insects, pp. 433443 in Porchet, M., Andries, J.C., et Dhainaut, A. (Eds.), Advances in Invertebrate Reproduction. Elsevier, Amsterdam.Google Scholar
Labeyrie, V. 1987. Towards a synthetic approach to insect–plant relationships, pp. 37in Labeyrie, V., Fabres, G., et Lachaise, D. (Eds.), Insects–Plants. Junk, Dordrecht, Netherlands.Google Scholar
Labeyrie, V., et Rousse-Rojas, D.. 1985. Superparasitism reconsidered: is it an adaptive competition? The example of Diadromus pulchellus. Experientia 41: 1518.Google Scholar
Lack, D. 1947. Darwin's finches. Cambridge Univ. Press, Cambridge, U.K.Google Scholar
Langston, D.T., et Watson, T.F.. 1975. Influence of genetic selection on diapause termination of the pink boll-worm. Ann. ent. Soc. Am. 68: 11021106.Google Scholar
Latscha, T., Frey, J., Ruggle, P., Saner, R., et MacKey, D.. 1987. Host plant relationships and speciation in leaf-mining agromyzid flies on umbelliferae. pp. 261266in Labeyrie, V., Fabres, G., et Lachaise, D. (Eds.), Insects–Plants. Junk, Dordrecht, Netherlands.Google Scholar
Laux, W. 1962. Individuelle Unterschiede in Verhalten und Leistung des Ringelspinners, Malacosoma neustna L. Zeits. Angew Zool. 49: 465524.Google Scholar
Leahy, M.G. 1970. Effect of the male accessory gland secretion on mosquitos and fruit flies, pp. 297309in C.N.R.S., Influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Leonard, D.E. 1967. Silking behavior of the gypsy moth, Porthetria dispar L. Can. Ent. 99: 11451149.Google Scholar
Leonard, D.E. 1968. Effects of density of larvae on the biology of the gypsy moth, Porthetria dispar L. Ent. Exp. Appl. 11: 291304.Google Scholar
Leonard, D.E. 1970. Intrinsic factors causing qualitative changes in populations of Porthetria dispar (Lep. Lymantriid.). Can. Ent. 102: 239249.Google Scholar
Levins, R. 1968. Evolution in changing environments. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
Lewontin, R.C. 1957. The adaptations of populations to varying environments. Cold Spring Harbor Symp. Quant. Biol. 22: 395403.Google Scholar
Lewontin, R.C., et Hubby, J.L.. 1966. A molecular approach to the study of genetic heterozygoty in natural populations. 2: amount of variation and degree of heterozygoty in natural populations of Drosophila melanogaster. Genetics 54: 595609.Google Scholar
Lewontin, R.C., Rose, S., et Kamin, L.J.. 1984. Not in our genes: biology, ideology and human nature. Pantheon Books, New York.Google Scholar
Likvientov, A.V. 1955. Fécondité, poids des œufs et survie de la descendance de Porthetria dispar. Zool. Zh. 34: 10611065.Google Scholar
MacFadyen, A. 1975. Some thoughts on the behaviour of ecologists. J. Anim. Ecol. 4: 351363.Google Scholar
Maksymov, J.K. 1959. Beitrag zur Biologie und Oekologie des Grauen Lärchenwicklers Zeiraphera griseana (Hb.) im Engadin. Mitt, schweiz. Ans. frostl. VersWes. 35: 277315.Google Scholar
May, R.M. 1976. Models for single populations, pp. 425in May, R.M. (Ed.), Theoretical Ecology. Blackwell Publications, Oxford.Google Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia Univ. Press, New York.Google Scholar
Mayr, E. 1974. Behavior programs and evolutionary strategies. Am. Sci. 62: 650659.Google Scholar
Mayr, E. 1981. La biologie de l'évolution. Hermann, Paris.Google Scholar
Merle, J. 1970. Rôle des sécrétions génitales mâles dans la physiologie de la drosophile femelle. pp. 310330in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Messina, F. J. 1987. Genetic contribution to the dispersal polymorphism of the cowpea weevil (Col.: Bruchidae). Ann. ent. Soc. Am. 80: 1216.Google Scholar
Milne, A. 1962. On a theory of natural control of insect populations. J. Theoret. Biol. 3: 1950.Google Scholar
Mlodzik, M., Fjose, A., et Gehring, W.J.. 1985. Isolation of caudal, Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage. EMBO. J. 4: 29612969.Google Scholar
Moloo, S.K. 1976. Storage of nutriments by adult female Glossina morsitans and their transfer to the intrauterine larva. J. Insect Physiol. 22: 11111115.Google Scholar
Monchadsky, A.S. 1958. À propos de la classification des facteurs du milieu. Zool. Zh. 5: 680692.Google Scholar
Morris, R.F. 1967. Influence of parental food quality on the survival of Hyphantria cunea. Can. Ent. 99: 2433.Google Scholar
Nicholson, A.J. 1955a. Compensatory reactions of populations to stresses, and their evolutionary significance. Aust. J. Zool. 2: 18.Google Scholar
Nicholson, A.J. 1955b. Density governed reaction, the counterpart of selection in evolution. Cold Spring Harbor Symp. Quant. Biol. 20: 288293.Google Scholar
Nicholson, A.J. 1957. The self-adjustment of populations to change. Cold Spring Harbor Symp. Quant. Biol. 22: 153173.Google Scholar
Papillon, M. 1962. Interaction du groupement, de l'alimentation et du facteur saisonnier sur Schistocerca gregaria. pp. 3762in C.N.R.S., Physiologie du comportement et écologie des acridiens en rapport avec laphase. C.N.R.S., Paris.Google Scholar
Papillon, M. 1963. Influence de la température d'incubation sur le polymorphisme larvaire de Schistocerca gregaria F. C. R. Acad. Sci., Paris 256: 40984100.Google Scholar
Papillon, M. 1970. Influence du groupement des adultes sur leur fécondité et sur le polymorphisme de leur descendance chez le criquet pèlerin, Schistocerca gregaria. pp. 7186in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Parker, F.D., et Tepedino, V.J.. 1982. Maternal influence on diapause in the alfalfa leaf cutting bee (Hym.: Megachilidae). Ann. ent. Soc. Am. 75: 407410.Google Scholar
Passera, L. 1970. Le rôle de la reine dans l'ovogenèse ouvrière chez la fourmi Plagiolepis pygmaea Latr. pp. 129145in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Perrimon, N., Engstrom, L., et Mahowald, A.P.. 1985. A pupal lethal mutation with a paternally influenced maternal effect on embryonic development in D. melanogaster. Develop. Biol. 110: 480491.Google Scholar
Plotnikov, V.I. 1927. Locusta (Pachytylus) migratoria L. and L. danica L. as independent forms and their derivatives. Uzbek. Op. Stants. Zashch. Rast. 33.Google Scholar
Pouzat, J. 1978. La régulation de l'activité reproductrice des femelles de la bruche du haricot (Acanthoscelides obtectus Say): influence de quelques facteurs externes (plante hôte, activité locomotrice). Thèse d'Etat, Tours.Google Scholar
Pouzat, J. 1981. The role of sense organs in the relations between bruchids and their host plants, pp. 6172in Labeyrie, V. (Ed.), The Ecology of Bruchids Attacking Legumes. Junk, The Hague.Google Scholar
Richards, L.J., et Myers, J. H.. 1980. Maternal influences on size and emergence time of the cinnabar moth. Can. J. Zool. 58: 14521457.Google Scholar
Roth, L.M. 1970. The stimuli regulating reproduction in cockroaches, pp. 270286in C.N.R.S., L'influence des stimuli externes sur la gamétogenèse des insectes. C.N.R.S., Paris.Google Scholar
Ruttner, H., et Ruttner, F.. 1972. Untersuchungen über die Flugaktivität und Paarungsverhalten der Drohen. Apidologie 3: 203232.Google Scholar
Saunders, D.S. 1962. The effect of the age of female Nasonia vitripennis Walk. (Hym.: Pterom.) upon the incidence of larval diapause. J. Insect Physiol. 8: 309318.Google Scholar
Saunders, D.S. 1965. Larval diapause of maternal origin: 1: induction of diapause in Nasonia vitripennis Walk. (Hymeno.: Pteromal.). J. Exp. Biol. 42: 495508.Google Scholar
Saunders, D.S. 1966a. Larval diapause of maternal origin: 2. the effect of photoperiod and temperature on Nasonia vitripennis. J. Insect Physiol. 12: 569582.Google Scholar
Saunders, D.S. 1966b. Larval diapause of maternal origin: 3: the effect of host shortage on Nasonia vitripennis. J. Insect Physiol. 12: 899908.Google Scholar
Sláma, K. 1980. Animal hormones and antihormones in plants. Biochem. Physiol. Pflanzen. 175: 177192.Google Scholar
Sláma, K. 1987. Insect hormones and bioanalogues in plants, pp. 916in Labeyrie, V., Fabres, G., et Lachaise, D. (Eds.), Insects–Plants. Junk, Dordrecht, Netherlands.Google Scholar
Smith, D.S. 1972. Crowding in grasshoppers: 2. Continuing effects of crowding on subsequent generations of Melanoplus sanguinipes (Orth.: Acrid.). Environ. Ent. 1: 314317.Google Scholar
Solomon, M.E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 135.Google Scholar
Southwood, T.R.E. 1978. Ecological methods, with particular reference to the study of insect populations. Chapman and Hall, London.Google Scholar
Teissier, G. 1952. Dynamique des populations et taxonomie. Ann. Soc. R. Zool. Belg. 83: 2342.Google Scholar
Utida, S. 1954. Phase dimorphism observed in the laboratory population of the cowpea weevil, Callosobruchus maculatus. Jpn. J. Appl. Zool. 18: 161168.Google Scholar
Utida, S. 1968. The influence of the parental condition on the production of flight form in the population of Callosobruchus maculatus. Jpn. J. Ecol. 18: 246249.Google Scholar
Uvarov, B.P. 1921. A revision of the genus Locusta L. (Bachytylus Fieb.) with a new theory as to the periodicity and migrations of locusts. Bull. ent. Res. 12: 135163.Google Scholar
Uvarov, B.P. 1961. Quantity and quality in insect populations. Proc. R. ent. Soc. Lond. C 25: 5259.Google Scholar
Venter, I.G. 1966. Ovariole number in the brown locust (Locustana pardalina Walker) in relation to the environment. S. Afr. J. Agric. Sci. 9: 629638.Google Scholar
Walker, I., et Pimentel, D.. 1966. Correlation between maternal longevity and incidence of diapause in Nasonia vitripennis Walk. (Hym.: Pterom.). Gerontologia 12: 8998.Google Scholar
Wellington, W.G. 1957. Individual differences as a factor in population dynamics: the development of a problem. Can. J. Zool. 35: 293323.Google Scholar
Wellington, W.G. 1960. Qualitative changes in natural populations during changes in abundance. Can. J. Zool. 38: 289314.Google Scholar
Wellington, W.G. 1962. Population quality and the maintenance of nuclear polyhedrosis between outbreaks of Malacosoma pluviale Dyar. J. Insect Pathol. 4: 285305.Google Scholar
Wellington, W.G. 1964. Qualitative changes in populations in unstable environments. Can. Ent. 96: 436451.Google Scholar
Wellington, W.G. 1965a. Some maternal influences on progeny quality in the western tent caterpillar, Malacosoma pluviale Dyar. Can. Ent. 97: 114.Google Scholar
Wellington, W.G. 1965b. An approach to a problem in population dynamics. Quaest. ent. 1: 175185.Google Scholar
Wellington, W.G. 1980. Dispersal and population change, pp. 1124in Berryman, A.A., et Safranyik, L. (Eds.), Dispersal of Forest Insects. Washington State Univ., Cooperative Extension Service, Pullman.Google Scholar
Wellington, W.G., et Maelzer, D.A.. 1967. Effects of farnesyl methyl ether on the reproduction of the western tent caterpillar, Malacosoma pluviale: some physiological, ecological, and practical implications. Can. Ent. 99: 249263.Google Scholar
White, M.J.D. 1973. Animal cytology and evolution. Cambridge Univ. Press, Cambridge, U.K.Google Scholar