Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-25T01:41:03.109Z Has data issue: false hasContentIssue false

TEMPORAL AND SPATIAL PATTERNS IN MID-APPALACHIAN SPRINGS

Published online by Cambridge University Press:  31 May 2012

James L. Gooch
Affiliation:
Department of Biology, Juniata College, Huntington, Pennsylvania, USA 16652
Douglas S. Glazier
Affiliation:
Department of Biology, Juniata College, Huntington, Pennsylvania, USA 16652
Get access

Abstract

The major topographic features and river courses of the mid-Appalachian Mountains are geologically ancient. Small rheocrenes are numerous in carbonate valleys with macroinvertebrate assemblages typically dominated by peracaridans and sometimes gastropods, with subordinate abundances of bivalves, triclads, and insects. Springs were approximately rank ordered by temporal persistence, using size, catchment area, proximity to base level, and bedrock permeability factors as criteria. A 38-m2 rheocrene, Ell Spring, was sampled seasonally over a 2-year period for distribution and abundances of taxa. Physicochemical factors and rank order of ordinal abundances were stable the 1st year, but less so the 2nd year after a watercress cover was removed. Ell Spring is divided into nine distinct habitat patches. Some species distributions are strongly associated with patches and others are broader. Regionally, heterozygosity and allele frequency patterns of Gammarus minus (Amphipoda) are conditioned by latitude, indicative of the effects of Pleistocene glaciation, and by distance to regional master streams. These factors do not detectably influence the ordinal composition of macroinvertebrate assemblages. However overall invertebrate abundances and the ratio of non-insect orders (which are presumably less rapid colonists) to insect orders are greater in long-persisting than in frequently disturbed springs. The species assemblages of disturbed springs may be influenced by recent history as well as by water chemistry, substratum, and other equilibrium factors.

Résumé

Les caractéristiques topographiques principales et le cours des rivières des monts mi-Appalaches sont géologiquement anciens. De petites rhéocrènes sont nombreuses dans les vallées carbonates avec des assemblages de macroinvertébrés dominés typiquement par des péracaridiés et parfois de gastropodes, avec des abondances subordonnées de bivalves, de triclades et d'insectes. Les sources ont été classées de façon approximative en ordre de rang en fonction de leur persistance dans le temps, en utilisant comme critères la grandeur, la superficie de drainage, la proximité au niveau de base et la perméabilité de la roche mère. La source Ell, une rhéocrène de 38 m2, a été échantillonné de façon saisonnière pendant une période de 2 ans pour étudier la distribution et l'abondance des taxons. Les facteurs physicochimiques et la classification ordinale en rang des abondances ont été stables pendant la 1ère année, mais plus variables la 2ème année après l'enlèvement d'une couche de cresson de fontaine. La source Ell est divisée en neuf habitats distincts. Quelques distributions d'espèces sont fortement associées avec les habitats, tandis que d'autres sont plus généralistes. Par région, la hétérozygocité et les patrons de fréquence allélique de Gammarus minus (Amphipoda) sont conditionnées par la latitude, ce qui est indicatif des effets de la glaciation du Pléistocène, et par la distance aux cours d'eau principaux de la région. Ces facteurs n'influencent pas de façon perceptible la composition ordinale des assemblages des macroinvertébrés. Cependant, les abondances de tous les invertébrés et le rapport des ordres autres que d'insectes (qui sont présumément des colonisateurs moins rapides) aux ordres d'insectes sont plus élevés dans les sources de persistance de longue durée que dans celles qui ont été fréquemment dérangées. Les assemblages d'espèces de sources dérangées pourraient être influencés par l'histoire récente aussi bien que par la chimie de l'eau, du substrat et d'autres facteurs d'équilibre.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, D.R., and Smith, S.M.. 1984. Insects of extremely small and extremely large aquatic habitats, pp. 456483in Resh, V.H., and Rosenberg, D.M. (Eds.), The Ecology of Aquatic Insects. Praeger Publishers, New York, NY.Google Scholar
Baxter, J.E. 1983. The quaternary geology of the West Branch of the Susquehanna River near Lock Haven, Pennsylvania. M.S. thesis, Pennsylvania State University, University Park, PA.Google Scholar
Butler, M.G. 1984. Life histories of aquatic insects, pp. 2555in Resh, V.H., and Rosenberg, D.M. (Eds), The Ecology of Aquatic Insects. Praeger Publishers, New York, NY.Google Scholar
Butler, M.J., and Hobbs, H.H. III. 1982. Drift and upstream movement of invertebrates in a springbrook community ecosystem. Hydrobiologia 89: 153159.Google Scholar
Canich, M.R. 1976. A study of the Tyrone-Mount Union lineament by remote sensing techniques and field methods. M.S. thesis, Pennsylvania State University, University Park, PA.Google Scholar
Covich, A.P. 1988. Geographical and historical comparisons of neotropical streams: Biotic diversity and detrital processing in highly variable habitats. J. N. Am. benthol. Soc. 7: 361386.Google Scholar
Crowl, G.H., and Sevon, W.D.. 1980. Glacial border deposits of Late Wisconsin age in northeastern Pennsylvania. Penn. Dept. Environ. Resources Gen. Geol. Rep. 71. 68 pp.Google Scholar
Culver, D. 1982. Cave Life. Harvard University Press, Cambridge, MA. 189 pp.Google Scholar
Doremus, C.M., and Harman, W.N.. 1977. The effects of grazing by physid and planorbid freshwater snails on periphyton. Nautilus 91: 9296.Google Scholar
Egglishaw, J.J. 1968. The quantitative relationship between bottom fauna and plant detritus in streams of different calcium concentrations. J. appl. Ecol. 5: 731740.Google Scholar
Elliott, J.M. 1977. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biol. Assoc. Sci. Publ. 25. Ambleside.Google Scholar
Environmental Data and Information Service. 1983. Monthly Palmer Drought Index: Period 1895–1981. National Oceanic and Atmospheric Service, National Climate Center, Ashville, NC.Google Scholar
Fisher, S.G., Gray, L.J., Grimm, N.B., and Busch, D.E.. 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 93110.Google Scholar
Flippo, H.N. Jr., 1974. Springs of Pennsylvania. Pennsylvania Department of Environmental Resources Publication, Harrisburg, PA. 46 pp.Google Scholar
Gaither, B.E. 1977. The relationship of spring discharge behavior to the hydrologic properties of carbonate aquifers. M.S. thesis, Pennsylvania State University, University Park, PA.Google Scholar
Giddings, M.T. 1974. Hydrologic budget of Spring Creek drainage basin. Ph.D. thesis, Pennsylvania State University, University Park, PA.Google Scholar
Glazier, D.S., and Gooch, J.L.. 1987. Macroinvertebrate assemblages in Pennsylvania (U.S.A.) springs. Hydrobiologia 150: 3343.Google Scholar
Gooch, J.L. 1990. Genetic differentiation in relation to stream distance in Gammarus minus (Amphipoda). Arch. Hydrobiol. 114: 505519.Google Scholar
Gooch, J.L. 1991. Spatial genetic patterns in relation to regional history and structure: Gammarus minus in Appalachian watersheds. Am. midl. Nat. 124: 93104.Google Scholar
Gooch, J.L., and Glazier, D.S.. 1986. Levels of heterozygosity in the amphipod Gammarus minus in an area affected by Pleistocene glaciation. Am. midl. Nat. 116: 5763.Google Scholar
Gooch, J.L., and Golladay, S.. 1981. Genetic population structure in an amphipod species. Int. J. Speleol. 11: 1520.Google Scholar
Gray, L.J., and Fisher, S.G.. 1981. Postflood recolonization pathways of macroinvertebrates in a lowland Sonoran desert stream. Am. midl. Nat. 106: 229242.Google Scholar
Gregory, J.J., and Walling, D.E.. 1973. Drainage Basin Form and Process. John Wiley and Sons, New York, NY. 458 pp.Google Scholar
Harris, H., and Hopkinson, D.A.. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Elsevier Publishing Company, New York, NY.Google Scholar
Holsinger, J. 1969. Biogeography of the freshwater amphipod crustaceans (Gammaridae) of the central and southern Appalachians, pp. 1950in Holt, P.C. (Ed.), The Distributional History of the Biota of the Southern Appalachians. Part I. Invertebrates. Virginia Polytechnic Inst. Press, Blacksburg, VA.Google Scholar
Holsinger, J. 1976. The cave fauna of Pennsylvania, pp. 7587in White, W.D. (Ed.), Geology and Biology of Pennsylvania Caves. Penn. Dept. Environ. Resources Gen. Geol. Rep. 66.Google Scholar
Hunter, R.D., and Lull, W.W.. 1977. Physiologic and environmental factors influencing the calcium-to-tissue ratio in populations of three species of freshwater pulmonate snails. Oecologia 29: 205218.Google Scholar
Jacobson, R.L., and Langmuir, D.. 1970. The chemical history of some spring waters in carbonate rocks. Ground-water 8: 59.Google Scholar
MacArthur, R.H., and Wilson, E.O.. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ. 203 pp.Google Scholar
Mandelbrot, B., and Wallis, J.R.. 1968. Noah, Joseph and operational hydrology. Water Resources Res. 4: 909918.Google Scholar
Meffe, G.K., and Minckley, W.L.. 1967. Persistence and stability of fish and invertebrate assemblages in a repeatedly disturbed Sonoran Desert stream. Am. midl. Nat. 117: 177191.Google Scholar
Miller, J.D., and Buikema, A.L. Jr., 1977. The effect of substrate on the distribution of the spring form (Form III) of Gammarus minus Say. Crustaceana Suppl. 4: 153163.Google Scholar
Minckley, W.L., and Cole, G.A.. 1963. Ecological and morphological studies on gammarid amphipods (Gammarus spp.) in spring-fed streams of northern Kentucky. Occas. Papers Adams Ctr. Ecol. Stud. 10: 135.Google Scholar
Minshall, G.W. 1967. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48: 139149.Google Scholar
Minshall, G.W. 1968. Community dynamics of the benthic fauna of a woodland springbrook. Hydrobiologia 32: 305339.Google Scholar
Minshall, G.W. 1988. Stream ecosystem theory: A global perspective. J. N. Am. benthol. Soc. 1988, 7: 263288.Google Scholar
Minshall, G.W., Peterson, R.C., and Nimz, C.F.. 1985. Species richness in streams of different size from the same drainage basin. Am. Nat. 125: 1638.Google Scholar
Moorshead, F. 1975. An investigation of stream-infiltration in the carbonate Nittany Valley of south-central Pennsylvania. M.S. thesis, Pennsylvania State University, University Park, PA.Google Scholar
Oberdorfer, R., McArthur, J.V., Barnes, J.R., and Dixon, J.. 1984. The effect of invertebrate predators on leaf litter processing in an alpine stream. Ecology 65: 13251331.Google Scholar
Parizek, R., and White, W.B.. 1985. Application of quaternary and tertiary geological factors to environmental problems in central Pennsylvania, pp. 63119in Sevon, W.D. (Ed.), 50th Annual Field Conference of Pennsylvania Geologists.Google Scholar
Parizek, R., White, W.B., and Langmuir, D.. 1971. Hydrogeology and geochemistry of folded and faulted rocks of the central Appalachian type and related land use problems. Earth and Mineral Sci. Exp. Stn. Circ. 82, Penn. State University. 182 pp.Google Scholar
Pennak, R.W. 1985. The freshwater invertebrate fauna: Problems and solutions for evolutionary success. Am. Zool. 25: 671687.Google Scholar
Perry, J.A., and Rose, F.L.. 1984. Organic carbon transport: Precision of measurement in stream systems. Am. midl. Nat. 111: 400404.Google Scholar
Resh, V.H. 1983. Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. Aquat. Insects 5: 193200.Google Scholar
Resh, V.H., Brown, A.V., Covich, A.P., Gurtz, M.E., Li, H.W., Minshall, G.W., Reice, S.R., Sheldon, A.L., Wallace, J.B., and Wissmar, R.. 1988. The role of disturbance theory in stream ecology. J. N. Am. benthol. Soc. 7: 433455.Google Scholar
Sevon, W.D. 1985. Pennsylvania's Polygenic Landscape: 4th Annual Field Trip. Harrisburg Area Geological Society Guidebook. 55 pp.Google Scholar
Shuster, E.T., and White, W.B.. 1971. Seasonal fluctuations in the chemistry of limestone springs: A possible means for characterizing carbonate aquifers. J. Hydrol. 14: 93128.Google Scholar
Smith, E.J. 1979. Spring discharge in relation to rapid fissure flow. Groundwater 17: 346350.Google Scholar
Sokal, R.R. 1979. Ecological parameters inferred from spatial correlograms. pp. 167196in Patiland, G.P., and Rosenzweig, L. (Eds.), Contemporary Quantitative Ecology and Related Econometrics. International Co-operative Publishing, Fairland, MD.Google Scholar
Stern, M.S., and Stern, D.H.. 1969. A limnological study of a Tennessee cold springbrook. Am. midl. Nat. 82: 6282.Google Scholar
Sweeney, B.W., Funk, D.H., and Vannote, R.L.. 1986. Population genetic structure of two mayflies (Ephemerella subvaria, Eurylophella verisimilis) in the Delaware River drainage basin. J. N. Am. benthol. Soc. 56: 253262.Google Scholar
Swofford, D.L., and Selander, R.B.. 1981. A computer program for the analysis of allelic variation in genetics. J. Hered. 72: 281283.Google Scholar
Taylor, L.E., Werkheiser, W.H., duPont, N.S., and Kriz, M.L.. 1982. Groundwater resources of the Juniata River basin, Pennsylvania. Penn. Dept. Environ. Resources Water Resource Rep. 54. 130 pp.Google Scholar
Thorup, J. 1970. The influence of a short-termed flood on a spring-brook community. Arch. Hydrobiol. 66: 447457.Google Scholar
van Gundy, J.J., and Gaufin, A.R.. 1973. Factors controlling macroinvertebrate diversity in spring communities. Unpublished ms. 24 pp.Google Scholar
Ward, J.V., and Stanford, J.A.. 1983. The intermediate-disturbance hypothesis: An explanation for biotic diversity patterns in lotic ecosystems, pp. 347356in Fontaine, T.D., and Bartell, S.M. (Eds.), Dynamics of Lotic Ecosystems. Ann Arbor Science Publ., Ann Arbor, MI.Google Scholar
Wartenberg, D. 1985. Spatial Autocorrelation Analysis Program. Users Guide. 17 pp.Google Scholar
White, E.L., and White, W.H.. 1974. Analysis of spring hydrographs as a characterization tool for karst aquifers. pp. 103106in Rauch, H.W., and Werner, E. (Eds.), Proceedings of the 4th Conference on Karst Geology and Hydrology. West Virginia Geological and Economic Survey.Google Scholar
Wilhm, J.L. 1970. Some aspects of structure and function of benthic macroinvertebrate populations in a spring. Am. midl. Nat. 84: 2035.Google Scholar
Wilkinson, L. 1985. SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL.Google Scholar
Williams, D.D. 1983. Biological Survey of Canada: National survey of freshwater springs. Bull. ent. Soc. Can. 15: 3034.Google Scholar
Williams, D.D. 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods, pp. 430455in Resh, V.H., and Rosenberg, D.M. (Eds.), The Ecology of Aquatic Insects. Praeger Publishers, New York, NY.Google Scholar
Williams, D.D. 1991. Life history traits of aquatic arthropods in springs, pp. 63–87 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Wright, H.E. Jr., 1987. Synthesis: The land south of the ice sheets, pp. 479488 in Ruddiman, W.F., and Wright, H.E. Jr., (Eds.), North America and Adjacent Oceans during the Last Deglaciation. Geological Society of America, Boulder, CO.Google Scholar
Yohn, C.E., and Gooch, J.L.. 1983. Intra-site genetic differentiation of the freshwater amphipod Gammarus minus. Penn. Acad. Sci. 41: 10.Google Scholar