Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-26T02:00:41.918Z Has data issue: false hasContentIssue false

Toward the modelling of riveted assemblies by super-elements in fast dynamics

Published online by Cambridge University Press:  22 April 2014

Claire Hennuyer*
Affiliation:
ONERA, The French Aerospace Lab, 59045 Lille, France LAMIH UMR CNRS 8201, University of Valenciennes and Hainaut-Cambrésis, 59313 Valenciennes, France
Nicolas Leconte
Affiliation:
LAMIH UMR CNRS 8201, University of Valenciennes and Hainaut-Cambrésis, 59313 Valenciennes, France
Bertrand Langrand
Affiliation:
ONERA, The French Aerospace Lab, 59045 Lille, France
Éric Markiewicz
Affiliation:
LAMIH UMR CNRS 8201, University of Valenciennes and Hainaut-Cambrésis, 59313 Valenciennes, France
*
a Corresponding author: claire.hennuyer@onera.fr
Get access

Abstract

The finite element analysis of the behaviour of airframes subjected to crash or impact loadings requires the use of suitable finite elements, in particular for the modelling of riveted assemblies. In order to predict the structure survivability, it is indeed necessary to focus on these areas because stress concentrations, and consequently crack initiations, which can lead to catastrophic loss of the airplane, are likely to occur. Because of the local nature of the phenomenon, the disproportion between the aircraft and the assembly scale, and the large number of fasteners in a complete structure (more than 100 000), super-elements for the fasteners and for the perforated sheets have been developed in order to suitably model assemblies in structural calculations. However, these two types of finite elements can not be currently connected together. The paper presented here focuses on how to link these finite elements.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Combescure, A., Delcroix, F., Caplain, L., Espanol, S., Eliot, P., A finite element to simulate the failure of weld points on impact, Int. J. Impact Eng. 28 (2003) 783802 CrossRefGoogle Scholar
Langrand, B., Deletombe, E., Markiewicz, E., Drazétic, P., Riveted joint modelling for numerical analysis of airframe crashworthiness, Finite Elem. Anal. Des. 38 (2001) 2144 CrossRefGoogle Scholar
Langrand, B., Patronelli, L., Deletombe, E., Markiewicz, E., Drazétic, P., An alternative numerical approach for full scale characterisation for riveted joint design, Aerosp. Sci. Technol. 6 (2002) 343354 CrossRefGoogle Scholar
Langrand, B., Bayart, A.S., Chauveau, Y., Deletombe, E., Assessment of multi-physics FE methods for bird impact modelling – Application to a metallic riveted airframe, Int. J. Crashworthiness 7 (2002) 415428 Google Scholar
Leconte, N., Langrand, B., Markiewicz, E., On some features of a Hybrid-Trefftz displacement element containing a hole, Finite Elem. Anal. Des. 46 (2010) 819828 CrossRefGoogle Scholar
N.I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff, Groningen, Holland, 1953
Piltner, R., Special finite elements with holes and internal cracks, Int. J. Numer. Methods Eng. 21 (1985) 14711485 CrossRefGoogle Scholar
Piltner, R., Comment on: “A hybrid-Trefftz element containing an elliptic hole”, by Manicka Dhanasekar, Jianjun Han and Qinghua Qin, Finite Elem. Anal. Des. 42 (2006) 13141323, Finite Elem. Anal. Des. 43 (2007) 975. Google Scholar
Piltner, R., Some remarks on finite elements with an elliptic hole, Finite Elem. Anal. Des. 44 (2008) 767772 CrossRefGoogle Scholar
Tong, P., New displacement hybrid finite element models for solid continua, Int. J. Numer. Methods Eng. 2 (1970) 7383 CrossRefGoogle Scholar
Pian, T.H.H., Chen, D., On the suppression of zero energy deformation modes, Int. J. Numer. Methods Eng. 19 (1983) 17411752 CrossRefGoogle Scholar
Sih, G.C., Stress distribution around an ovaloid hole under arbitrary concentrated forces, Appl. Sci. Res. 12 (1964) 378390 CrossRefGoogle Scholar
Kirsch, G., Die theorie der elastizitat und die bedurfnisse der festigkeitslehre, Z. VDI 42 (1898) 797807 Google Scholar
C. Hennuyer, B. Langrand, Modélisation par super-éléments finis de rupture de tôles perforées et rivetées soumises au choc et à l’impact : Bilan de 1ère année de thèse, Onera Report no. RA 2/19554 DADS, 2012
Dhanasekar, M., Han, J., Qin, Q.H., A hybrid-Trefftz element containing an elliptic hole, Finite Elem. Anal. Des. 42 (2006) 13141323 CrossRefGoogle Scholar
F. Cesari, F.M. Furgiuele, D. Martini, Analisi di strutture piane in materiale eterogeneo con l’elemento finito ibrido, in: XXX AIAS, Alghero, Italy, 2001, pp. 1093–1101
Yang, C.H., Soh, A.K., Modeling of voids/cracks and their interactions, Theor. Appl. Fract. Mech. 38 (2002) 81101. CrossRefGoogle Scholar