Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T03:34:36.393Z Has data issue: false hasContentIssue false

Prototype de thermobalance multitêtes avec cyclage thermique rapide

Published online by Cambridge University Press:  21 June 2007

Sandrine Sureau
Affiliation:
CIRIMAT, UMR CNRS 5085, Equipe MEMO, ENSIACET, 118 route de Narbonne, 31400 Toulouse, France
Daniel Monceau
Affiliation:
CIRIMAT, UMR CNRS 5085, Equipe MEMO, ENSIACET, 118 route de Narbonne, 31400 Toulouse, France
Dominique Poquillon
Affiliation:
CIRIMAT, UMR CNRS 5085, Equipe MEMO, ENSIACET, 118 route de Narbonne, 31400 Toulouse, France
Jean-claude Salabura
Affiliation:
CIRIMAT, UMR CNRS 5085, Equipe MEMO, ENSIACET, 118 route de Narbonne, 31400 Toulouse, France
Get access

Abstract

Lorsque la résistance à l'oxydation à haute température des matériaux est testée, l'essai d'oxydation cyclique est souvent utilisé comme référence car il intègre la cinétique d'oxydation isotherme, l'adhérence de l'oxyde, les contraintes mécaniques, le fluage de l'alliage métallique et de l'oxyde dans des conditions proches de celles de l'utilisation. Cet article présente un nouvel outil expérimental, qui permet la mesure simultanée et individuelle de la masse de plusieurs échantillons placés dans la même atmosphère contrôlée pendant le cyclage thermique rapide. Cette thermobalance multitêtes est décrite, en association avec la description de la méthodologie de mesure. Les performances de l'appareil sont données, ceci incluant les vitesses de chauffe et de refroidissement ainsi qu'un essai de mesure de masse continue sur un échantillon de Ni20Cr.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Mougin, M. Dupeux, A. Galerie, L. Antoni, Inverted Blister test to measure Adhesion Energy of Thermal Oxide Scales on Metals and Alloys, Materials Science and Technology, 18, 1217–1220 (2002)
H.E. Evans, R.C. Lobb, Conditions For The Initiation Of Oxide-Scale Cracking and Spallation, Corrosion Science, 24, 209–222 (1984)
H.E. Evans, A. Strawbridge, R.A. Carolan, C.B. Ponton, Creep effects on the spallation of an alumina layer from a NiCrAlY coating, Materials Science and Engineering, A225, 1–8 (1997)
H. Echsler, E.A. Martinez, L. Singheiser, W.J. Quadakkers, Residual stresses in alumina scales grown on different types of Fe–Cr–Al alloys: effect of specimen geometry and cooling rate, Materials Science and Engineering, A384, 1–11 (2004)
M. Schütze, W.J. Quaddakkers, Cyclic Oxidation of High Temperature Materials (EFC 27), The European Federation of Corrosion (1999)
J.L. Smialek, Oxide morphology and spalling model for NiAl, Metallurgical and Materials Transactions, 9A, 309–319 (1978)
C.E. Lowell, C.A. Barrett, R.W. Palmer, J.V. Auping, H.B. Probst, COSP: a computer model of cyclic oxidation, Oxidation of Metals, 36, 81–112 (1991)
D. Poquillon, D. Monceau, Application of a simple statistical spalling model for the analysis of high temperature cyclic oxidation kinetics data, Oxidation of Metals, 59, 409–431 (2003)
D. Monceau, D. Poquillon, Continuous thermogravimetry in cyclic conditions, Oxidation of Metals, 61, 143–163 (2004)
B.A. Pint, P.F. Tortorelli, I.G. Wright, Effect of cycle frequency on high-temperature oxidation behavior of alumina- and chromia- forming alloys, in: M. Schütze, W.J. Quadakkers (Eds.), Cyclic oxidation of high temperature materials, vol EFC 27, IOM Communications Ltd, London, 1999, pp. 111–132
H.J. Grabke, D.B. Meadowcroft (Eds.), Guidelines for Methods of Testing and Research in High Temperature Corrosion (EFC 14), The European Federation of Corrosion, 1995, p
D. Poquillon, D. Oquab, B. Viguier, F. Senocq, D. Monceau, High temperature oxidation kinetics of NiAl single crystal and oxide spallation as a function of crystallographic orientation, Materials Science and Engineering A, 381, 237–248 (2004)
D. Poquillon, D. Oquab, D. Monceau, Cyclic oxidation kinetics modeling of NiAl single crystal, Materials Science Forum, 461–464, 737–745 (2004)
J.C. Pivin, D. Delaunay, C. Roques-Carmes, A.M. Huntz, P. Lacombe, Oxidation mechanism of Fe-Ni-20-25Cr-5Al alloys. Influence of small amounts of yttrium on oxidation kinetics and oxide adherence, Corrosion Science, 20, 351–373 (1980)
U. Krupp, S.Y. Chang, A. Schimke, H.J. Christ, Modelling internal corrosion processes as a consequence of oxide scale failure, in: M. Schütze, W.J. Quadakkers, J.R. Nicholls (Eds.), Lifetime modelling of high temperature corrosion processes, vol EFC 34, Maney Publishing, London, 2001, pp. 148–164
P. Vangeli, B. Ivarsson, Investigation of a new methodology in high temperature oxidation. Application to commercial austenic steels., Materials Science Forum, 369–372, 785–792 (2001)
Dispositif et procédé de test, par thermogravimétrie, du comportement d'un matériau solide in: vol N° enregistrement francais : FR0300742, N° demande internationale : PCT/FR2004/000090, N° publication internationale : WO2004/068102, N° demande brevet canadien CA2514070, N° demande brevet Europe EP1585976.