Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T08:52:58.034Z Has data issue: false hasContentIssue false

Heat fluxes and electrodes temperature in a proton exchange membrane fuel cell

Published online by Cambridge University Press:  31 October 2012

Get access

Abstract

Measurement of heat fluxes and electrodes temperature in a proton exchange membrane fuel cell were performed using platinum wires and heat flux sensors. A temperature difference of 6 °C to 9 °C between the electrodes and the bipolar plates was observed for a cell operating at a current density of 1.5 A.cm-2. These measurements show a strong non-uniformity of the temperature profile through the membrane electrode assembly that future models should take into account. Simultaneous heat fluxes measurements have allowed to evaluate in situ the effective thermal conductivity of the porous layers. Values of the order of 0.3 W.m-1.K-1 were found.

Type
Research Article
Copyright
© AFM, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Djilali, N., Lu, D., Influence of heat transfer on gas and water transport in fuel cells, Int. J. Therm. Sci. 41 (2002) 2940 CrossRefGoogle Scholar
Weber, A.Z., Newman, J., Coupled thermal and water management in polymer electrolyte fuel cells, J. Electrochem. Soc. 153 (2006) A2205A2214 CrossRefGoogle Scholar
Wang, Y., Wang, C.Y., A nonisothermal, two-phase model for polymer electrolyte fuel cells, J. Electrochem. Soc. 153 (2006) A1193A1200 CrossRefGoogle Scholar
Eikerling, M., Water management in cathode catalyst layers of PEM fuel cells, J. Electrochem. Soc. 153 (2006) E58E70 CrossRefGoogle Scholar
Hickner, M.A., Siegel, N.P., Chen, K.S., Hussey, D.S., Jacobson, D.L., Arif, M., Understanding liquid water distribution and removal phenomena in an operating PEMFC via neutron radiography, J. Electrochem. Soc. 155 (2008) B294B302 CrossRefGoogle Scholar
Hickner, M.A., Siegel, N.P., Chen, K.S., Hussey, D.S., Jacobson, D.L., Arif, M., In situ high-resolution neutron radiography of cross-sectional liquid water profiles in proton exchange membrane fuel cells, J. Electrochem. Soc. 155 (2008) B427B434 CrossRefGoogle Scholar
Kim, S., Mench, M.M., Investigation of temperature-driven water transport in polymer electrolyte fuel cell : Phase-change-induced flow, J. Electrochem. Soc. 156 (2009) B353B362 CrossRefGoogle Scholar
Kim, S., Mench, M.M., Investigation of temperature-driven water transport in polymer electrolyte fuel cell : Thermo-osmosis in membranes, J. Membr. Sci. 328 (2009) 113-120 CrossRefGoogle Scholar
Fu, R.S., Preston, J.S., Pasaogullari, U., Shiomi, T., Miyazaki, S., Tabuchi, Y., Hussey, D.S., Jacobson, D.L., Water transport across a polymer electrolyte membrane under thermal gradients, J. Electrochem. Soc. 158 (2011) B303B312 CrossRefGoogle Scholar
Hatzell, M.C., Turhan, A., Kim, S., Hussey, D.S., Jacobson, D.L., Mench, M.M., Quantification of temperature driven flow in a polymer electrolyte fuel cell using high-resolution neutron radiography, J. Electrochem. Soc. 158 (2011) B717B726 CrossRefGoogle Scholar
Vie, P.J.S., Kjelstrup, S., Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell, Electrochim. Acta 49 (2004) 10691077 CrossRefGoogle Scholar
Zhang, G., Guo, L., Ma, L., Liu, H., Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell, J. Power Sources 195 (2010) 35973604 CrossRefGoogle Scholar
Zhang, G., Shen, S., Guo, L., Liu H, H., Dynamic characteristics of local current densities and temperatures in proton exchange membrane fuel cells during reactant starvations, Int. J. Hydrogen Energy 37 (2012) 18841892 CrossRefGoogle Scholar
Maranzana, G., Lottin, O., Colinart, T., Chupin, S., Didierjean, S., A multi-instrumented polymer exchange membrane fuel cell : Observation of the in-plane non-homogeneities, J. Power Sources 180 (2008) 748754 CrossRefGoogle Scholar
Ramousse, J., Lottin, O., Didierjean, S., Maillet, D., Heat sources in Proton Exchange Membrane (PEM) fuel cells, J. Power Sources 192 (2009) 435441 CrossRefGoogle Scholar
Weber, A.Z., Hickner, M.A., Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly, Electrochim. Acta 53 (2008) 76687674 CrossRefGoogle Scholar
Thomas, A., Maranzana, G., Didierjean, S., Dillet, J., Lottin, O., Thermal effect on water transport in proton exchange membrane fuel cell, Fuel Cells12 (2012) 212224 CrossRefGoogle Scholar
Burheim, O., Pharoah, J.G., Lampert, H., Vie, P.J.S., Kjelstrup, S., Through-plane thermal conductivity of pemfc porous transport layers, J. Fuel Science & Technology 8 (2011) 021013 CrossRefGoogle Scholar
Ramousse, J., Didierjean, S., Lottin, O., Maillet, D., Estimation of the effective thermal conductivity of carbon felts used as PEMFC Gas Diffusion Layers, Int. J. Therm. Sci. 47 (2008) 16 CrossRefGoogle Scholar