Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T07:23:24.202Z Has data issue: false hasContentIssue false

Evaluation of the mechanical properties of plasma-sprayed coating by nanoindentation technology

Published online by Cambridge University Press:  16 November 2012

Wei-Chao Guo
Affiliation:
LTAS/MN2L, Aerospace & Mechanical Engineering Department, University of Liège, 4000 Liège, Belgium Engineering Simulation and Aerospace Computing, the Key Laboratory of Contemporary Design & Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi, China
Gast Rauchs
Affiliation:
Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 4221 Esch-sur-Alzette, Luxembourg
Luc Papeleux
Affiliation:
LTAS/MN2L, Aerospace & Mechanical Engineering Department, University of Liège, 4000 Liège, Belgium
Wei-Hong Zhang
Affiliation:
Engineering Simulation and Aerospace Computing, the Key Laboratory of Contemporary Design & Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi, China
François Gitzhofer
Affiliation:
Plasma Technology Research Center (CRTP), Department of Chemical Engineering, University of Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
Jean-Philippe Ponthot*
Affiliation:
LTAS/MN2L, Aerospace & Mechanical Engineering Department, University of Liège, 4000 Liège, Belgium
*
a Corresponding author: JP.Ponthot@ulg.ac.be
Get access

Abstract

In this paper, the mechanical properties of plasma-sprayed coatings are evaluated using the technology of nanoindentation. According to the indentation curve (load versus indenter’s displacement), which is recorded in an indentation experiment, the mechanical behaviour of the plasma-sprayed coating is investigated via inverse analysis using numerical optimization algorithms. The tip rounding of imperfect indenter is investigated in parameter identification. Subsequently, the hardness on the top surface and on the vertical cross section of the plasma-sprayed coating are investigated. The results show that the hardness on the top surface of the coating depends on the indentation depth. Moreover, the results show that the hardness on the cross section of the coating is significantly affected by the substrate if the indentation impression is too close to the coating-substrate interface.

Type
Research Article
Copyright
© AFM, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Fauchais, P., Understanding plasma spraying, J. Phys. D : Appl. Phys. 37 (2004) 86108 CrossRefGoogle Scholar
F. Gitzhofer, Induction plasma technology applied to the combinatorial synthesis of coatings using suspensions and solutions precursors, The 3th international workshop RIPT (Les Rencontres Internationales sur la Projection Thermique) University of Sciences and Technologies of Lille, France, 2007
Mohammadi, Z., Ziaei-Moayyed, A.A., Mesgar, A.S.M., Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings, Appl. Surf. Sci. 253 (2007) 49604965 CrossRefGoogle Scholar
Yin, Z.J., Tao, S.Y., Zhou, X.M., Ding, C.X., Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique, J. Phys. D – Appl. Phys. 40 (2007) 70907096 CrossRefGoogle Scholar
Bouzakis, K.D., Lontos, A., Michailidis, N., Knotek, O., Lugscheider, E., Bobzin, K., Etzkorn, A., Determination of mechanical properties of electron beam-physical vapor deposition-thermal barrier coatings (EB-PVD-TBCs) by means of nanoindentation and impact testing, Surf. Coatings Technol. 163-164 (2003) 7580 CrossRefGoogle Scholar
Li, J.F., Wang, X.Y., Liao, H., Ding, C.X., Coddet, C., Indentation analysis of plasma-sprayed Cr3C2-NiCr coatings, J. Mater. Sci. 39 (2004) 71117114 CrossRefGoogle Scholar
Lin, C.K., Berndt, C.C., Statistical analysis of microhardness variations in thermal spray coatings, J. Mater. Sci. 30 (1995) 111117 CrossRefGoogle Scholar
Leigh, S.H., Berndt, C.C., Evaluation of off-angle thermal spray, Surf. & Coatings Technol. 89 (1997) 213224 CrossRefGoogle Scholar
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 15641583 CrossRefGoogle Scholar
A.C. Fischer-Cripps, Nanoindentation, Berlin : Springer-Verlag, New York, NY, 2002
Ponthot, J.P., Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes, Int. J. Plastic. 18 (2002) 91126 CrossRefGoogle Scholar
P.Z. Berke, Numerical modeling of the surface and the bulk deformation in a small scale contact, Application to the nanoindentation interpretation and to the micro-manipulation, PhD thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2008
Rauchs, G., Optimization-based material parameter identification in indentation testing for finite strain elasto-plasticity, ZAMM, J. Appl. Math. Mech. 86 (2006) 539562 Google Scholar
Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S., Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Materialia 49 (2001) 38993918 CrossRefGoogle Scholar
Bolzon, G., Maier, G., Panico, M., Material model calibration by indentation, imprint mapping and inverse analysis, Int. J. Solids Struct. 41 (2004) 29572975 CrossRefGoogle Scholar
Chen, X., Ogasawara, N., Zhao, M., Chiba, N., On the uniqueness of measuring elastoplastic properties from indentation : the indistinguishable mystical materials, J. Mech. Phys. Sol. 55 (2007) 16181660 CrossRefGoogle Scholar
Stupkiewicz, S., Korelc, J., Dutko, M., Rodic, T., Shape sensitivity analysis of large deformation frictional contact problems, Comput. Methods in Appl. Mech. Eng. 191 (2002) 35553581 CrossRefGoogle Scholar
Bocciarelli, M., Bolzon, G., Maier, G., Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping, Mech. Mat. 37 (2005) 855868 CrossRefGoogle Scholar
Mata, M., Alcala, J., The role of friction on sharp indentation, J. Mech. Phys. Sol. 52 (2004) 145165 CrossRefGoogle Scholar
Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., Shen, Y.L., Indentation across size scales and disciplines : Recent developments in experimentation and modeling, Acta Materialia 55 (2007) 40154039 CrossRefGoogle Scholar
Albrecht, H.J., Hannach, T., Hase, A., Juritza, A., Muller, K., Muller, W.H., Nanoindentation : a suitable tool to determine local mechanical properties in microelectronic packages and materials?, Archive of Applied Mechanics 74 (2005) 728738 CrossRefGoogle Scholar
Vandamme, M., Ulm, F.J., Viscoelastic solutions for conical indentation, Int. J. Sol. Struct. 43 (2006) 31423165 CrossRefGoogle Scholar
Giannakopoulos, A.E., Elastic and viscoelastic indentation of flat surfaces by pyramid indentors, J. Mech. Phys. Sol. 54 (2006) 13051332 CrossRefGoogle Scholar
Wang, Y., Raabe, D., Kluber, C., Roters, F., Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Materialia 52 (2004) 22292238 CrossRefGoogle Scholar
Cheng, L., Xia, X., Scriven, L.E., Gerberich, W.W., Spherical-tip indentation of viscoelastic material, Mech. Mat. 37 (2005) 213226 CrossRefGoogle Scholar
Ponthot, J.P., Kleinermann, J.P., A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation, Comput. Methods Appl. Mech. Eng. 195 (2006) 54725508 CrossRefGoogle Scholar
Hysitron, TriboIndenter User’s Manual, Hysitron Inc., 2005
Bouzakis, K.D., Michailidis, N., Hadjiyiannis, S., Skordaris, G., Erkens, G., The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation, Materials Characterization 49 (2003) 149-156 CrossRefGoogle Scholar
J.P. Ponthot, finite-element code. METAFOR, http://metafor.ltas.ulg.ac.be/dokuwiki/, 2010
Bucaille, J.L., Felder, E., Hochstetter, G., Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test, J. Mater. Sci. 37 (2002) 39994011 CrossRefGoogle Scholar
Antunes, J.M., Menezes, L.F., Fernandes, J.V., Influence of Vickers tip imperfection on depth sensing indentation tests, Int. J. Sol. Struct. 44 (2007) 27322747 CrossRefGoogle Scholar
Jeong, S.M., Lee, H.L., finite-element analysis of the tip deformation effect on nanoindentation hardness, Thin Solid Films 492 (2005) 173179 CrossRefGoogle Scholar
Yu, N., Polycarpou, A.A., Conry, T.F., Tip-radius effect in finite-element modeling of sub-50 nm shallow nanoindentation, Thin Solid Films 450 (2004) 295303 CrossRefGoogle Scholar
Winnubst, A.J.A., Keizer, K., Burggraaf, A.J., Mechanical properties and fracture behaviour of ZrO2-Y2O3 ceramics, J. Mater. Sci. 18 (1983) 19581966 CrossRefGoogle Scholar
Zhao, Z.M., Zhang, L., Song, Y.G., Wang, W.G., Liu, H.B., Composition, microstructures and properties of Al2O3/ZrO2 (Y2O3) self-growing ceramic composites prepared by combustion synthesis under high gravity, J. Phys. : Conf. Ser. 152 (2009) 012085 Google Scholar
Chen, X., Vlassak, J.J., Numerical study on the measurement of thin film mechanical properties by means of nanoindentation, J. Mater. Res. 16 (2001) 29742982 CrossRefGoogle Scholar