Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-04T09:06:22.213Z Has data issue: false hasContentIssue false

Can we predict fire extinction by water mist with FDS?

Published online by Cambridge University Press:  04 December 2013

A. Jenft*
Affiliation:
LEMTA, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, Université de Lorraine, UMR 7563, CNRS, Vandœuvre-lès-Nancy, France CNPP, Centre National de Prévention et de Protection, Vernon, France
P. Boulet
Affiliation:
LEMTA, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, Université de Lorraine, UMR 7563, CNRS, Vandœuvre-lès-Nancy, France
A. Collin
Affiliation:
LEMTA, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, Université de Lorraine, UMR 7563, CNRS, Vandœuvre-lès-Nancy, France
G. Pianet
Affiliation:
CNPP, Centre National de Prévention et de Protection, Vernon, France
A. Breton
Affiliation:
CNPP, Centre National de Prévention et de Protection, Vernon, France
A. Muller
Affiliation:
CNPP, Centre National de Prévention et de Protection, Vernon, France
*
a Corresponding author: alexandre.jenft@gmail.com
Get access

Abstract

Among the primary phenomena observed when studying fire suppression are fuel surface cooling, fire plume cooling and inerting effects. The last two result from water evaporation generating a significant vapor concentration, thus leading to an important heat sink as well as displacement and dilution of both oxygen and fuel vapor. Fire Dynamics Simulator (FDS.v6) is expected to be able to reproduce these effects. Extinguishment criterion focusing on plume cooling and inerting effects is based on a dedicated heat balance, whereas suppression model related to fuel surface cooling evaluates the burning rate decrease according to an exponential law taking into account local water mass reaching the fuel surface per unit area and an empirical constant which penalizes the prediction ability. Therefore, a new model derived from an Arrhenius equation has been implemented, which links the burning rate to the fuel surface temperature. Numerical simulations are conducted and compared with experimental data for all extinguishing mechanisms.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Arvidson, T. Hertzberg, The VINNOVA water mist research project: a description of the 500 m3 machinery space tests, SP Report 19 (2003)
C.L. Beyler, Flammability Limits of Premixed and Diffusion Flames, In SFPE Handbook of Fire Protection Engineering (ed. National Fire Protection Association), 2002, pp. 2.172–2.187
E. Blanchard, Modelisation de l’interaction entre un brouillard d’eau et un feu en tunnel. PhD Thesis, University Henri Poincaré, Nancy, France, 2011
Grant, G., Brenton, J., Drysdale, D., Fire suppression by water sprays, Fire Safety J. 26 (2000) 79130 Google Scholar
Liu, Z., Kim, A.K., Review of water mist fire suppression systems – fundamental studies. J. Fire Protection Eng. 10 (2000) 3250 Google Scholar
J.R. Mawhinney, G.G. Back III, Water Mist Fire suppression Systems. In SFPE Handbook of Fire Protection Engineering (ed. National Fire Protection Association) (2002) pp. 4.311–4.337
J. Vaari, S. Hostikka, T. Sikanen, A. Paajanen, Numerical simulations on the performance of water-based fire suppression systems. VTT Technology 54 (2012)