Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T05:13:32.007Z Has data issue: false hasContentIssue false

A linear linear lambda-calculus

Published online by Cambridge University Press:  31 May 2024

Alejandro Díaz-Caro*
Affiliation:
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina CONICET-Universidad de Buenos Aires, Instituto de Ciencias de la Computación (ICC), Buenos Aires, Argentina Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Gilles Dowek
Affiliation:
Inria & ENS Paris-Saclay, Paris, France
*
Corresponding author: Alejandro Díaz-Caro; Email: adiazcaro@conicet.gov.ar

Abstract

We present a linearity theorem for a proof language of intuitionistic multiplicative additive linear logic, incorporating addition and scalar multiplication. The proofs in this language are linear in the algebraic sense. This work is part of a broader research program aiming to define a logic with a proof language that forms a quantum programming language.

Type
Special Issue: LSFA 2021 and LSFA 2022
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenkirch, T. and Grattage, J. (2005). A functional quantum programming language. In: Proceedings of LICS 2005, IEEE, 249258.Google Scholar
Arrighi, P. and Díaz-Caro, A. (2012). A system F accounting for scalars. Logical Methods in Computer Science 8 (1:11).Google Scholar
Arrighi, P., Díaz-Caro, A. and Valiron, B. (2017). The vectorial lambda-calculus. Information and Computation 254 (1) 105139.Google Scholar
Arrighi, P. and Dowek, G. (2017). Lineal: a linear-algebraic lambda-calculus. Logical Methods in Computer Science 13 (1:8) 133.Google Scholar
Blute, R. (1996). Hopf algebras and linear logic. Mathematical Structures in Computer Science 6 (2) 189217.CrossRefGoogle Scholar
Chardonnet, K. (2023). Towards a Curry-Howard Correspondence for Quantum Computation. Phd thesis, Université Paris-Saclay.Google Scholar
Coecke, B. and Kissinger, A. (2017). Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge, UK : Cambridge University Press.CrossRefGoogle Scholar
Díaz-Caro, A. and Dowek, G. (2023). A new connective in natural deduction, and its application to quantum computing. Theoretical Computer Science 957 113840.CrossRefGoogle Scholar
Díaz-Caro, A., Dowek, G. and Rinaldi, J. (2019a). Two linearities for quantum computing in the lambda calculus. BioSystems 186 104012, Postproceedings of TPNC 2017.CrossRefGoogle ScholarPubMed
Díaz-Caro, A., Guillermo, M., Miquel, A. and Valiron, B. (2019b). Realizability in the unitary sphere. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), 113.Google Scholar
Díaz-Caro, A. and Malherbe, O. (2022a). Quantum control in the unitary sphere: lambda- ${\mathcal S}_1$ and its categorical model. Logical Methods in Computer Science 18 (3) 32.Google Scholar
Díaz-Caro, A. and Malherbe, O. (2022b). Semimodules and the (syntactically-)linear lambda calculus. Draft at arXiv:2205.02142.Google Scholar
Díaz-Caro, A. and Petit, B. (2012). Linearity in the non-deterministic call-by-value setting. In: Ong, L. and de Queiroz, R.(eds.)Proceedings of WoLLIC 2012, vol. 7456, 216231, LNCS.Google Scholar
Ehrhard, T. (2002). On Köthe sequence spaces and linear logic. Mathematical Structures in Computer Science 12 (5) 579623.Google Scholar
Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur. Phd thesis, Université de Paris 7.Google Scholar
Girard, J.-Y. (1987). Linear logic. Theoreoretical Computer Science 50 (1) 1102.CrossRefGoogle Scholar
Girard, J.-Y. (1999). Coherent Banach spaces: a continuous denotational semantics. Theoretical Computer Science 227 (1-2) 275297.CrossRefGoogle Scholar
Mayr, R. and Nipkow, T. (1998). Higher-order rewrite systems and their confluence. Theoretical Computer Science 192 (1) 329.CrossRefGoogle Scholar
Selinger, P. and Valiron, B. (2006). A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16 (3) 527552.CrossRefGoogle Scholar
Vaux, L. (2009). The algebraic lambda calculus. Mathematical Structures in Computer Science 19 (5) 10291059.CrossRefGoogle Scholar
Zorzi, M. (2016). On quantum lambda calculi: a foundational perspective. Mathematical Structures in Computer Science 26 (7) 11071195.CrossRefGoogle Scholar