Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-10T19:27:59.920Z Has data issue: false hasContentIssue false

Coherence in monoidal track categories

Published online by Cambridge University Press:  30 October 2012

YVES GUIRAUD
Affiliation:
Institut Camille Jordan, INRIA, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
PHILIPPE MALBOS
Affiliation:
Institut Camille Jordan, INRIA, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

Abstract

We introduce homotopical methods based on rewriting on higher-dimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and use rewriting methods on polygraphs to solve it. The setting is extended to more general coherence problems, viewed as 3-dimensional word problems in a track category, including the case of braided monoidal categories.

Type
Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baader, F. and Nipkow, T. (1998) Term rewriting and all that, Cambridge University Press.CrossRefGoogle Scholar
Book, R. V. and Otto, F. (1993) String-rewriting systems, Texts and Monographs in Computer Science, Springer-Verlag.CrossRefGoogle Scholar
Burroni, A. (1993) Higher-dimensional word problems with applications to equational logic. Theoretical Computer Science 115 (1)4362.CrossRefGoogle Scholar
Guiraud, Y. (2004) Présentations d'opérades et systèmes de réécriture, Ph.D. Thesis, Université Montpellier 2. (Available at tel.archives-ouvertes.fr/tel-00006863.)Google Scholar
Guiraud, Y. (2006) Termination orders for 3-dimensional rewriting. Journal of Pure and Applied Algebra 207 (2)341371.CrossRefGoogle Scholar
Guiraud, Y. and Malbos, P. (2009) Higher-dimensional categories with finite derivation type. Theory and Applications of Categories 22 (18)420478.Google Scholar
Guiraud, Y. and Malbos, P. (2011) Identities among relations for higher-dimensional rewriting systems. Société Mathématique de France, Séminaires et Congrès 26 145161.Google Scholar
Guiraud, Y. and Malbos, P. (2012) Higher-dimensional normalisation strategies for acyclicity. Advances in Mathematics 231 (3-4)22942351.CrossRefGoogle Scholar
Joyal, A. and Street, R. (1993) Braided tensor categories. Advances in Mathematics 102 (1)2078.CrossRefGoogle Scholar
Mac Lane, S. (1963) Natural associativity and commutativity. Rice University Studies 49 (4)2846.Google Scholar
Mac Lane, S. (1965) Categorical algebra. Bulletin of the American Mathematical Society 71 40106.CrossRefGoogle Scholar
Métayer, F. (2003) Resolutions by polygraphs. Theory and Applications of Categories 11 148184.Google Scholar
Newman, M. H. A. (1942) On theories with a combinatorial definition of “equivalence”. Annals of Mathematics 43 (2)223243.CrossRefGoogle Scholar
Stasheff, J. (1963) Homotopy associativity of H-spaces. I, II. Transactions of the American Mathematical Society 108 275292 and 293–312.Google Scholar
Street, R. (1976) Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra 8 (2)149181.CrossRefGoogle Scholar
Street, R. (1987) The algebra of oriented simplexes. Journal of Pure and Applied Algebra 49 (3)283335.CrossRefGoogle Scholar
Thue, A. (1914) Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Kristiania Videnskabs-Selskabet Skrifter 10 493524.Google Scholar