Published online by Cambridge University Press: 24 October 2008
The solution for the flow of an incompressible fluid past an infinitely long wedge with a finite sloping edge (a finite wedge) is generalized by the hodograph method. In the flow thus obtained the axis of symmetry and a sloping edge of the wedge are again part of one streamline. It becomes possible to describe the flow of an ideal gas past a finite wedge if the hypothesis is made that the first singularity on this streamline, along the sloping edge, corresponds to the shoulder of the wedge. For a given wedge, with gradually increasing velocity at infinity upstream, the singularity appears at first at subsonic velocity. Beyond a certain critical velocity at infinity the singularity is always associated with the speed of sound. The hypothesis thus implies that put forward by Maccoll(9) and supported by Busemann(l). A qualitative examination shows that the solution reproduces experimentally known features of the flow of compressible fluid past a finite wedge.