Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T03:50:46.144Z Has data issue: false hasContentIssue false

Numerical index of Banach spaces and duality

Published online by Cambridge University Press:  12 February 2007

KOSTYANTYN BOYKO
Affiliation:
Faculty of Mechanics and Mathematics, Kharkov National University, pl. Svobody 4, 61077 Kharkov, Ukraine. e-mail: k_boyko@ukr.net, vova1kadets@yahoo.com
VLADIMIR KADETS
Affiliation:
Faculty of Mechanics and Mathematics, Kharkov National University, pl. Svobody 4, 61077 Kharkov, Ukraine. e-mail: k_boyko@ukr.net, vova1kadets@yahoo.com
MIGUEL MARTÍN
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: mmartins@ugr.es
DIRK WERNER
Affiliation:
Department of Mathematics, Freie Universtät Berlin, Arnimallee 2-6, D-14195 Berlin, Germany. e-mail: werner@math.fu-berlin.de

Abstract

We present an example of a Banach space whose numerical index is strictly greater than the numerical index of its dual, giving a negative answer to a question which has been latent since the beginning of the seventies. We also show a particular case in which the numerical index of the space and the one of its dual coincide.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bauer, F. L.. On the field of values subordinate to a norm. Numer. Math. 4 (1962), 103111.CrossRefGoogle Scholar
[2] Bohnenblust, H. F. and Karlin, S.. Geometrical properties of the unit sphere in Banach algebras. Ann. of Math. 62 (1955), 217229.CrossRefGoogle Scholar
[3] Bonsall, F. F. and Duncan, J.. Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. London Math. Soc. Lecture Note Series 2 (Cambridge University Press, 1971).CrossRefGoogle Scholar
[4] Bonsall, F. F. and Duncan, J.. Numerical Ranges II. London Math. Soc. Lecture Note Series 10 (Cambridge University Press 1973).CrossRefGoogle Scholar
[5] Crabb, M. J., Duncan, J. and McGregor, C. M.. Mapping theorems and the numerical radius. Proc. London Math. Soc. 25 (1972), 486502.CrossRefGoogle Scholar
[6] Duncan, J., McGregor, C., Pryce, J. and White, A.. The numerical index of a normed space. J. London Math. Soc. 2 (1970), 481488.CrossRefGoogle Scholar
[7] Dutta, S. and Rao, T. S. S. R. K.. On weak*-extreme points in Banach spaces. J. Convex Anal. 10 (2003), 531539.Google Scholar
[8] Ed–Dari, E.. On the numerical index of Banach spaces. Linear Algebra Appl. 403 (2005), 8696.CrossRefGoogle Scholar
[9] Ed–Dari, E. and Khamsi, M. A.. The numerical index of the L p space. Proc. Amer. Math. Soc. 134 (2006), 20192025.CrossRefGoogle Scholar
[10] Finet, C., Martín, M. and Payá, R.. Numerical index and renorming. Proc. Amer. Math. Soc. 131 (2003), 871877.CrossRefGoogle Scholar
[11] Fullerton, R. E.. Geometrical characterization of certain function spaces. In: Proc. Inter. Sympos. Linear spaces (Jerusalem 1960), pp. 227236 (Pergamon, 1961).Google Scholar
[12] Glickfeld, B. W.. On an inequality of Banach algebra geometry and semi-inner-product space theory. Illinois J. Math. 14 (1970), 7681.CrossRefGoogle Scholar
[13] Godefroy, G.. Boundaries of a convex set and interpolation sets. Math. Ann. 277 (1987), 173184.CrossRefGoogle Scholar
[14] Halmos, P.. A Hilbert Space Problem Book (Van Nostrand, 1967).Google Scholar
[15] Harmand, P., Werner, D. and Werner, W.. M-ideals in Banach spaces and Banach algebras. Lecture Notes in Math. 1547 (Springer-Verlag, 1993).CrossRefGoogle Scholar
[16] Huruya, T.. The normed space numerical index of C*-algebras. Proc. Amer. Math. Soc. 63 (1977), 289290.Google Scholar
[17] Kadets, V. M. and Popov, M. M.. The Daugavet property for narrow operators in rich subspaces of C[0, 1] and L 1[0, 1]. St. Petersburg Math. J. 8 (1997), 571584.Google Scholar
[18] Kaidi, A., Morales, A. and Rodríguez–Palacios, A.. Geometrical properties of the product of a C*-algebra. Rocky Mountain J. Math. 31 (2001), 197213.Google Scholar
[19] Lima, Å.. Intersection properties of balls in spaces of compact operators. Ann. Inst. Fourier (Grenoble) 28 (1978), 3565.CrossRefGoogle Scholar
[20] López, G., Martín, M. and Payá, R.. Real Banach spaces with numerical index 1. Bull. London Math. Soc. 31 (1999), 207212.CrossRefGoogle Scholar
[21] Lumer, G.. Semi-inner-product spaces. Trans. Amer. Math. Soc. 100 (1961), 2943.CrossRefGoogle Scholar
[22] Martín, M.. A survey on the numerical index of a Banach space. Extracta Math. 15 (2000), 265276.Google Scholar
[23] Martín, M.. Banach spaces having the Radon-Nikodým property and numerical index 1. Proc. Amer. Math. Soc. 131 (2003), 34073410.CrossRefGoogle Scholar
[24] Martín, M.. The alternative Daugavet property for C*-algebras and JB*-triples, Math. Nachr. (to appear).Google Scholar
[25] Martín, M. and Merí, J.. Numerical index of some polyhedral norms on the plane, Linear Multilinear Algebra (to appear).Google Scholar
[26] Martín, M., Merí, J.. and Rodríguez–Palacios, A.. Finite-dimensional Banach spaces with numerical index zero. Indiana U. Math. J. 53 (2004), 12791289.CrossRefGoogle Scholar
[27] Martín, M. and Oikhberg, T.. An alternative Daugavet property. J. Math. Anal. Appl. 294 (2004), 158180.CrossRefGoogle Scholar
[28] Martín, M. and Payá, R.. Numerical index of vector-valued function spaces. Studia Math. 142 (2000), 269280.CrossRefGoogle Scholar
[29] Martín, M. and Payá, R.. On CL-spaces and almost-CL-spaces. Ark. Mat. 42 (2004), 107118.CrossRefGoogle Scholar
[30] Martín, M. and Villena, A. R.. Numerical index and Daugavet property for L (μ, X). Proc. Edinburgh Math. Soc. 46 (2003), 415420.CrossRefGoogle Scholar
[31] Martínez–Moreno, J., Mena–Jurado, J. F., Payá–Albert, R. and Rodríguez–Palacios, A.. An approach to numerical ranges without Banach algebra theory. Illinois J. Math. 29 (1985), 609626.CrossRefGoogle Scholar
[32] McGregor, C. M.. Finite dimensional normed linear spaces with numerical index 1. J. London Math. Soc. 3 (1971), 717721.CrossRefGoogle Scholar
[33] Oikhberg, T.. Spaces of operators, the ψ-Daugavet property, and numerical indices. Positivity 9 (2005), 607623.CrossRefGoogle Scholar
[34] Reisner, S.. Certain Banach spaces associated with graphs and CL-spaces with 1-unconditonal bases. J. London Math. Soc. 43 (1991), 137148.CrossRefGoogle Scholar
[35] Sharir, M.. Extremal structure in operator spaces. Trans. Amer. Math. Soc. 186 (1973), 91111.CrossRefGoogle Scholar
[36] Toeplitz, O.. Das algebraische Analogon zu einem Satze von Fejer. Math. Z. 2 (1918), 187197.CrossRefGoogle Scholar
[37] Werner, D.. The Daugavet equation for operators on function spaces. J. Funct. Anal. 143 (1997), 117128.CrossRefGoogle Scholar