Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T11:12:38.499Z Has data issue: false hasContentIssue false

Minimal primal ideal spaces and norms of inner derivations of tensor products of C*-algebras

Published online by Cambridge University Press:  24 October 2008

Eberhard Kaniuth
Affiliation:
Fachbereich Mathematik/Informatik, Universität Paderborn, D-33095 Paderborn, Germany

Extract

An ideal I in a C*-algebra A is called primal if whenever n ≥ 2 and J1,…, Jn are ideals in A with zero product then JkI for at least one k. The topologized space of minimal primal ideals of A, Min-Primal (A), has been extensively studied by Archbold[3]. Very much in the spirit of Fell's work [14] it was shown in [3, theorem 5·3] (see also [5, theorem 3·4]) that if A is quasi-standard, then A is *-isomorphic to a maximal full algebra of cross-sections of Min-Primal (A). Moreover, if A is separable the fibre algebras are primitive throughout a dense subset. On the other hand, the complete regularization of the primitive ideal space of A gives rise to the space of so-called Glimm ideals of A, Glimm (A). It turned out that A is quasi-standard exactly when Min-Primal (A) and Glimm (A) coincide as sets and topologically [5, theorem 3·3].

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Archbold, R. J.. On the centre of a tensor product of C*-algebras. J. London Math. Soc. (2) 10 (1975), 257262.CrossRefGoogle Scholar
[2]Archbold, R. J.. On the norm of an inner derivation of a C*-algebra. Math. Proc. Camb. Phil. Soc. 84 (1978), 273291.CrossRefGoogle Scholar
[3]Archbold, R. J.. Topologies for primal ideals. J. London Math. Soc. (2) 36 (1987), 524542.Google Scholar
[4]Archbold, R. J. and Batty, C. J. K.. On factorial states of operator algebras. III. J. Operator Theory 15 (1986), 5381.Google Scholar
[5]Archbold, R. J. and Somerset, D. W. B.. Quasi-standard C*-algebras. Math. Proc. Camb. Phil. Soc. 107 (1990), 349360.CrossRefGoogle Scholar
[6]Batty, C. J. K.. Derivations of tensor products of C*-algebras. J. London Math. Soc. (2) 18 (1978), 129140.CrossRefGoogle Scholar
[7]Beckhoff, F.. The minimal primal ideal space of a C*-algebra and local compactness. Canad. Math. Bull. 34 (1991), 440446.CrossRefGoogle Scholar
[8]Blackadar, B. A.. Infinite tensor products of C*-algebras. Pacific J. Math. 72 (1977), 313344.CrossRefGoogle Scholar
[9]Choi, M. D. and Effros, E. G.. Nuclear C*-algebras and injectivity: the general case. Indiana Univ. Math. J. 26 (1977), 443446.CrossRefGoogle Scholar
[10]Connes, A.. Classification of injective factors. Ann. Math. 104 (1976), 73115.CrossRefGoogle Scholar
[11]Dauns, J. and Hofmann, K. H.. Representations of rings by continuous sections. Mem. Amer. Math. Soc. 83 (Amer. Math. Soc., 1968).CrossRefGoogle Scholar
[12]Dixmier, J.. Points séparés dans le spectre d'une C*-algèbre. Acta Sci. Math. (Szeged) 22 (1961), 115128.Google Scholar
[13]Dixmier, J.. Les C*-algèbres et leurs représentations. (Gauthier-Villars, 1964).Google Scholar
[14]Fell, J. M. G.. The structure of algebras of operator fields. Acta Math. 106 (1961), 233280.Google Scholar
[15]Green, P.. The local structure of twisted covariance algebras. Acta Math. 140 (1978), 191250.CrossRefGoogle Scholar
[16]Guichardet, A.. Tensor products of C*-algebras. I. Finite tensor products. (Math. Inst. Aarhus Univ. Lecture Notes 12, 1969).Google Scholar
[17]Hauenschild, W., Kaniuth, E. and Voigt, A.. *-regularity and uniqueness of C*-norm for tensor products of *-algebras. J. Fund. Anal. 89 (1990), 137149.Google Scholar
[18]Kadison, R. V., Lance, C. E. and Ringrose, J. R.. Derivations and automorphisms of operator algebras, II. J. Funct. Anal. 1 (1967), 204221.CrossRefGoogle Scholar
[19]Somerset, D. W. B.. The inner derivations and the primitive ideal space of a C*-algebra. J. Operator Theory 29 (1993), 307321.Google Scholar
[20]Somerset, D. W. B.. The inner derivations and primal ideals of C*-algebras. J. London Math. Soc., to appear.Google Scholar
[21]Stampfli, J. G.. The norm of a derivation. Pacific J. Math. 33 (1970), 737748.CrossRefGoogle Scholar
[22]Takesaki, M.. On the crossnorm of the direct product of C*-algebras. Tohoku Math. J. 16 (1964), 111122.CrossRefGoogle Scholar
[23]Tomiyama, J.. Application of Fubini type theorem to tensor products of C*-algebras. Tohoku Math. J. 19 (1967), 213226.CrossRefGoogle Scholar
[24]Zaki, A. M.. Primal ideals and tensor products of C*-algebras. J. Math. Phy. Sci. 24 (1990), 171176.Google Scholar
[25]Zsido, L.. The norm of a derivation of a W*-algebra. Proc. Amer. Math. Soc. 38 (1973), 147150.Google Scholar