Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T14:25:18.064Z Has data issue: false hasContentIssue false

Mass transference principle for limsup sets generated by rectangles

Published online by Cambridge University Press:  05 February 2015

BAO-WEI WANG
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China. e-mail: bwei_wang@hust.edu.cn; jun.wu@mail.hust.edu.cn; arielxj@hotmail.com
JUN WU
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China. e-mail: bwei_wang@hust.edu.cn; jun.wu@mail.hust.edu.cn; arielxj@hotmail.com
JIAN XU*
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China. e-mail: bwei_wang@hust.edu.cn; jun.wu@mail.hust.edu.cn; arielxj@hotmail.com
*
Corresponding author.

Abstract

We generalise the mass transference principle established by Beresnevich and Velani to limsup sets generated by rectangles. More precisely, let {xn}n⩾1 be a sequence of points in the unit cube [0, 1]d with d ⩾ 1 and {rn}n⩾1 a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set

\begin{equation*}\big\{x\in [0,1]^d: x\in B(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*}
we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set
\begin{equation*}\big\{x\in [0,1]^d: x\in B^{a}(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*}
where a = (a1, . . ., ad) with 1 ⩽ a1a2 ⩽ . . . ⩽ ad and Ba(x, r) denotes a rectangle with center x and side-length (ra1, ra2,. . .,rad). When a1 = a2 = . . . = ad, the result is included in the setting considered by Beresnevich and Velani.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Beresnevich, V. and Velani, S.A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 (2006), no. 3, 971992.Google Scholar
[2]Beresnevich, V., Dickinson, D. and Velani, S.Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc. 179 (2006), no. 846, x+91 pp.Google Scholar
[3]Bernik, V. I. and Dodson, M. M.Metric Diophantine approximation on Manifolds Cambridge Tracts in Mathematics 137 (Cambridge University Press, Cambridge, 1999), xii+172 pp.CrossRefGoogle Scholar
[4]Bovey, J. D. and Dodson, M. M.The Hausdorff dimension of systems of linear forms. Acta Arith. 45 (1986), no. 4, 337358.CrossRefGoogle Scholar
[5]Dickinson, D. and Velani, S.Hausdorff measure and linear forms. J. Reine Angew. Math. 490 (1997), 136.Google Scholar
[6]Dodson, M. M.Hausdorff dimension, lower order and Khintchine's theorem in metric Diophantine approximation. J. Reine Angew. Math. 432 (1992), 6976.Google Scholar
[7]Dodson, M. M.Geometric and probabilistic ideas in the metric theory of Diophantine approximations. Uspekhi Mat. Nauk 48 (1993), no.5(293), 77106.Google Scholar
[8]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G.Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37 (1990), no. 1, 5973.Google Scholar
[9]Falconer, K. J.Fractal Geometry, Mathematical Foundations and Application (John Wiley & Sons, Ltd., Chichester, 1990).Google Scholar
[10]Groshev, A. V.Une théorème sur les systèmes des formes linéaires. Dokl. Akad. Nauk SSSR 9 (1938), 151152.Google Scholar
[11]Harman, G.Metric Number Theory. London Math. Series Monogr. 18 (Clarendon Press, Oxford 1998).Google Scholar
[12]Hill, R. and Velani, S.The ergodic theory of shrinking targets. Invent. Math. 119 (1995), no. 1, 175198.CrossRefGoogle Scholar
[13]Hill, R. and Velani, S.The shrinking target problem for matrix transformations of tori. J. London Math. Soc. (2) 60 (1999), no. 2, 381398.CrossRefGoogle Scholar
[14]Jarník, I.Uber die simultanen diophantischen Approximationen. Math. Z. 33 (1931) 503543.Google Scholar
[15]Pollington, A. and Vaughan, R.The k-dimensional Duffin and Schaeffer conjecture. Mathematika 37 (1990) 190200.Google Scholar
[16]Rynne, B. P.Hausdorff dimension and generalized simultaneous Diophantine approximation. Bull. London Math. Soc. 30 (1998), 365376.Google Scholar
[17]Schmidt, W. M.Diophantine approximation. Lecture Notes in Math. 785 (1980).Google Scholar
[18]Sprindzuk, V.Metric theory of Diophantine Approximations (translated by R. A. Silverman). (V. H. Winston & Sons, Washington D.C., 1979).Google Scholar