Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T07:38:32.520Z Has data issue: false hasContentIssue false

Immersions in bordism classes

Published online by Cambridge University Press:  24 October 2008

András Szücs
Affiliation:
Department of Analysis I, Eötvös University, Budapest, Hungary

Extract

1·1. The aim of the present paper is to prove the following

Theorem. Let Vi and Mn be closed smooth manifolds and i < n. Let f: ViMn be a generic smooth map such that all of its singular points are of the type Σ;1, 0. (See [2].) Then there exists a non-zero integer N such that the bordism class N·[f]εΩi(Mn) contains an immersion.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ando, Y.. On the elimination of Morin's singularities. J. Math. Soc. Japan 37 (1985), 471488.CrossRefGoogle Scholar
[2]Boardman, J. M.. Singularities of differentiable maps. I.H.E.S. Publ. Math. 33 (1967), 2157.CrossRefGoogle Scholar
[3]Brown, E. H.. Cohomology theories. Ann. Math. 75 (1962), 467484CrossRefGoogle Scholar
Brown, E. H.. Cohomology theories. Ann. Math. 90 (1969), 157186.Google Scholar
[4]Buoncristiano, S. and Dedo, M.. On resolving singularities and relating bordism to homology. Ann. Sc. Norm. Sup. Pisa (4) 7 (1980), 605624.Google Scholar
[5]Burlet, O.. Cobordismes de plongements et produits homotopiques. Comment. Math. Helv. 46 (1971), 277289.CrossRefGoogle Scholar
[6]Conner, P. E. and Floyd, E. E.. Differentiable Periodic Maps. Ergebnisse der Math. Band 33 (Springer-Verlag, 1964).Google Scholar
[7]du Plessis, A. A.. Maps without certain singularities. Comment. Math. Helv. 50 (1975), 363382.CrossRefGoogle Scholar
[8]Eliashberg, J. M.. On singularities of folding type. Math. USSR Isvestija 4 (1970), 11191134.CrossRefGoogle Scholar
[9]Ellis, D.. Unstable bordism groups and isolated singularities. Trans. Amer. Math. Soc. 274 (1982), 695708.CrossRefGoogle Scholar
[10]Koschorke, U.. Vector fields and other vector bundle morphisms. Lecture Notes in Math. vol. 847 (Springer-Verlag, 1981).CrossRefGoogle Scholar
[11]Morin, B.. Formes canoniques des singularités d'une application différentiable. C. R. Acad. Sci. Paris 260 (1965), 56625665.Google Scholar
[12]Pastor, G.. On bordism groups of immersions. Trans. Amer. Math. Soc. 283 (1984), 295301.CrossRefGoogle Scholar
[13]Serre, J. P.. Homologie singulière des espaces fibrés. Appl. Ann. Math. 54 (1951), 425505.Google Scholar
[14]Szücs, A.. Cobordisms of maps with simplest singularities. In Topology Symposium, Siegen 1979. Lecture Notes in Math. vol. 788 (Springer-Verlag 1980), 223244.CrossRefGoogle Scholar
[15]Szücs, A.. Cobordism of immersions with restricted selfintersections. Osaka J. Math. 21 (1984), 7180.Google Scholar
[16]Szücs, A.. Multiple points of singular maps. Math. Proc. Cambridge Philos. Soc. 100 (1986), 331346.CrossRefGoogle Scholar
[17]Szücs, A.. Applications of the Pontrjagin–Thom construction for singular maps. Periodica Mathematica Hungarica. (Submitted.)Google Scholar
[18]Thom, R.. Quelques propriétés globales des variétés differentiables. Comment. Math. Helv. 28 (1954), 1786.CrossRefGoogle Scholar
[19]Wells, R.. Cobordism groups of immersions. Topology 5 (1966), 281294.CrossRefGoogle Scholar