Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T23:58:00.602Z Has data issue: false hasContentIssue false

Global bitangency properties of generic closed space curves

Published online by Cambridge University Press:  24 October 2008

Juan J. Nuño Ballesteros
Affiliation:
Departament de Matemàtiques i Informàtica, Universitat Jaume I, Spain
M. Carmen Romero Fuster
Affiliation:
Departamento de Matemàtica, Universidade Federal de Viçosa, Brazil

Abstract

We study bitangency properties of space curves in general position from a global viewpoint. As a consequence we obtain some results on their total numbers of bitangent osculating planes and cross tangents, and prove that in the absence of both, the number of zero torsion points of a curve in general position is a multiple 4.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bruce, J. W. and Giblin, P. J.. Curves and Singularities (Cambridge University Press, 1984).Google Scholar
[2]Cleave, J.. The form of the tangent developable at points of zero torsion on space curves. Math. Proc. Cambridge Philos. Soc. 88 (1980), 403407.CrossRefGoogle Scholar
[3]Golubitsky, M. and Guillemin, V.. Stable Mappings and their Singularities. Graduate Texts in Math. no. 14 (Springer-Verlag, 1973).CrossRefGoogle Scholar
[4]Jones, E. Sharon. A generalization of the two-vertex theorem for space curves. J. Differential Geom. 10 (1975), 110.CrossRefGoogle Scholar
[5]Mond, D.. Singularities of the exponential map of the tangent bundle associated with an immersion. Proc. London Math. Soc. (3) 53 (1986), 357384.CrossRefGoogle Scholar
[6]Nuño Ballesteros, J. J.. On the number of triple points of the tangent developable. Preprint.Google Scholar
[7]Ozawa, T.. The number of triple tangencies of smooth space curves. Topology 24 (1985), 113.CrossRefGoogle Scholar
[8]Pohl, William F.. The self-linking number of a closed space curve. J. Math. Mech. 17 (1968), 170211.Google Scholar
[9]Romero Fuster, M. C.. Convexly-generic curves in ℝ3. Geom. Dedicata 28 (1988), 729.CrossRefGoogle Scholar
[10]Romero Fuster, M. C., Costa, S. I. R. and Nuño Ballesteros, J. J.. Some global properties of closed space curves. In Differential Geometry, Peñíscola 1988, Lecture Notes in Math. vol. 1410 (Springer-Verlag, 1989), pp. 286295.Google Scholar
[11]Scherback, O. P.. Projectively dual space curves and Legendre Singularities. Selecta Math. Soviet (4) 5 (1986), 391421.Google Scholar
[12]Sedykh, V. D.. Double tangent planes to a space curve. Siberian Math. J. 30 (1989), 161162.CrossRefGoogle Scholar