Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-24T02:32:32.147Z Has data issue: false hasContentIssue false

Geometric collections and Castelnuovo–Mumford regularity

Published online by Cambridge University Press:  01 November 2007

L. COSTA*
Affiliation:
Facultat de Matemàtiques, Departament d'Algebra i Geometria, Gran Via de les Corts, Catalanes 585, 08007 Barcelona, Spain. email: costa@ub.edu, miro@ub.edu
R. M. MIRÓ–ROIG*
Affiliation:
Facultat de Matemàtiques, Departament d'Algebra i Geometria, Gran Via de les Corts, Catalanes 585, 08007 Barcelona, Spain. email: costa@ub.edu, miro@ub.edu
*
Partially supported by MTM2004-00666.
Partially supported by MTM2004-00666.

Abstract

The paper begins by overviewing the basic facts on geometric exceptional collections. Then we derive, for any coherent sheaf on a smooth projective variety with a geometric collection, two spectral sequences: the first one abuts to and the second one to its cohomology. The main goal of the paper is to generalize Castelnuovo–Mumford regularity for coherent sheaves on projective spaces to coherent sheaves on smooth projective varieties X with a geometric collection σ. We define the notion of regularity of a coherent sheaf on X with respect to σ. We show that the basic formal properties of the Castelnuovo–Mumford regularity of coherent sheaves over projective spaces continue to hold in this new setting and we show that in case of coherent sheaves on and for a suitable geometric collection of coherent sheaves on both notions of regularity coincide. Finally, we carefully study the regularity of coherent sheaves on a smooth quadric hypersurface (n odd) with respect to a suitable geometric collection and we compare it with the Castelnuovo–Mumford regularity of their extension by zero in .

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Beilinson, A. A.. Coherent sheaves on Popfn and problems of linear algebra. Funkt. Anal. Appl. 12 (1979), 214216.CrossRefGoogle Scholar
[2]Bondal, A. I.. Representation of associative algebras and coherent sheaves. Math. USSR Izv. 34 (1990), 2342.CrossRefGoogle Scholar
[3]Bondal, A. I. and Polishchuk, A. E.. Homological properties of associative algebras: the method of helices. Russian Acad. Sci. Izv. Math. 42 (1994), 219259.Google Scholar
[4]Costa, L. and Miró–Roig, R. M.. Tilting sheaves on toric varieties. Math. Z. 248 (2004), 849865.CrossRefGoogle Scholar
[5]Costa, L. and Miró–Roig, R. M.. Derived categories of projective bundles. Proc. Amer. Math. Soc. 133 (2005), no. 9, 25332537.CrossRefGoogle Scholar
[6]Drezet, J. M. and Le Potier, J.. Fibrés stables et fibrés exceptionelles sur Popf2. Ann. Sci. école Norm. Sup. 18 (1985), 193244.CrossRefGoogle Scholar
[7]Gorodentsev, L.. Surgeries of exceptional bundles on Popfn. Math. USSR Izv. 32 (1989), 113.CrossRefGoogle Scholar
[8]Gorodentsev, L.. Exceptional vector bundles on surfaces with a moving anticanonical class. Math. USSR Izv. 33 (1989), 6783.CrossRefGoogle Scholar
[9]Gorodentsev, A. L. and Kuleshov, S. A.. Helix Theory. Preprint MPI (2001), 97.Google Scholar
[10]Gorodentsev, L. and Rudakov, A. N.. Exceptional vector bundles on the projective space. Duke Math. J. 54 (1987), 115130.CrossRefGoogle Scholar
[11]Hartshorne, R.. Algebraic Geometry. GTM 52 (Springer-Verlag, 1983).Google Scholar
[12]Iskovskikh, V. A.. Anticanonical models of three-dimensional varieties. J. Soviet Math., 13 vol II (1980), 745814.CrossRefGoogle Scholar
[13]Kapranov, M. M.. On the derived category of coherent sheaves on Grassmann manifolds. Math. USSR Izv. 24 (1985), 183192.CrossRefGoogle Scholar
[14]Kapranov, M. M.. On the derived category of coherent sheaves on some homogeneous spaces. Invent. Math. 92 (1988), 479508.CrossRefGoogle Scholar
[15]Kuznetsov, A. G.. Exceptional collection of vector bundles on V 22 Fano threefolds. Moscow Univ. Math. Bull. 51 (1996), 3537.Google Scholar
[16]Mumford, D.. Lectures on curves on an algebraic surface. Ann. of Math. Stud. 59 (1966).Google Scholar
[17]Nogin, D. Y.. Spirals of period four and equations of Markov type. Math. USSR Izv. 37 (1991), 209226.CrossRefGoogle Scholar
[18]Nogin, D. Y.. Helices on some Fano threefolds: constructivity of semiorthogonal bases of K 0. Ann. Sc. Ec. Norm. Sup. 27 (1994), 129172.Google Scholar
[19]Orlov, D. O.. Exceptional set of vector bundles on the variety V 5. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1991), 6971.Google Scholar
[20]Ottaviani, G.. Spinor bundles on quadrics. Trans. Amer. Math. Soc. 307 (1988), 301316.CrossRefGoogle Scholar
[21]Rudakov, A. N. et al. Helices and vector bundles: Seminaire Rudakov. Lecture Note Series 148 (Cambridge University Press, 1990).CrossRefGoogle Scholar
[22]Rudakov, A. N.. Exceptional vector bundles on a quadric. Math. Izv. 33 (1989), 115138.CrossRefGoogle Scholar