Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-08-01T14:36:49.925Z Has data issue: false hasContentIssue false

Existence of R-matrix for a quantized Kac–Moody algebra

Published online by Cambridge University Press:  24 October 2008

Volodimir Lyubashenko
Affiliation:
Department of Mathematics, University of York, Heslington, York, YO1 5DD

Abstract

There is a pairing between two Borel subalgebras of a quantized Kac–Moody algebra, which plays the rôle of R-matrix. Over the field ℚ(q) this pairing is non-degenerate. We show the existence of a braiding in some categories of representations of a quantized Kac-Moody algebra.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Drinfeld, V. G., Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl. 32 (1985), 254258.Google Scholar
[2]Drinfeld, V. G.. Unpublished, 1986.Google Scholar
[3]Drinfeld, V. G.. Quantum groups. Proceedings of the ICM, AMS, Providence, R.I. 1 (1987), 798820.Google Scholar
[4]Jimbo, M.. A q-difference analog of U(g) and the Yang–Baxter equation. Lett. Math. Phys. 10 (1985), 6369.CrossRefGoogle Scholar
[5]Joyal, A. and Street, R.. Tortile Yang–Baxter operators in tensor categories. J. Pure Appl. Alg. 71 (1991), 4351.CrossRefGoogle Scholar
[6]Kashiwara, M.. On Crystal Bases of the q-Analog of Universal Enveloping Algebras. Duke Math. J. 63 (1991), 465516.CrossRefGoogle Scholar
[7]Kirillov, A. N. and Reshetikhin, N.. q-Weyl group and a multiplicative formula for universal R-matrices. Comm. Math. Phys. 134 (1990), no. 2, 421431.CrossRefGoogle Scholar
[8]Khoroshkin, S. M. and Tolstoy, V. N.. Universal R-matrix for quantized (super)algebras. Comm. Math. Phys. 141 (1991), no. 3, 599617.CrossRefGoogle Scholar
[9]Levendorskii, S. Z. and Soibelman, Ya. S.. Quantum Weyl group and multiplicative formula for the R-matrix of a simple Lie algebra. Funct. Analysis and its Appl. 25 (1991), no. 2, 143145.CrossRefGoogle Scholar
[10]Lyubashenko, V. V.. Superanalysis and solutions to the triangles equation. Candidate's Dissertation Phys.-Mat. Sciences, Kiev, 1987.Google Scholar
[11]Majid, S.. More examples of bicrossproduct and double cross product Hopf algebras. Israel J. Math. 72 (1990), no. 1–2, 133148.CrossRefGoogle Scholar
[12]Majid, S.. Doubles of quasitriangular Hopf algebras. Commun. Alg. 19 (1991), no. 11, 30613073.CrossRefGoogle Scholar
[13]Okado, M. and Yamane, H.. R-matrices with gauge parameters and multi-parameter quantized enveloping algebras (preprint), 1991.CrossRefGoogle Scholar
[14]Reshetikhin, N.. Multiparameter Quantum Groups and Twisted Quasitriangular Hopf Algebras. Lett. Math. Phys. 20 (1990), 331335.CrossRefGoogle Scholar
[15]Tanisaki, T.. Killing Forms, Harish–Chandra Isomorphisms, and Universal R-Matrices for Quantum Algebras. Int. J. Modern Phys. A 7 (1992), 941961.CrossRefGoogle Scholar
[16]Yetter, D. N.. Quantum groups and representations of monoidal categories. Math. Proc. Camb. Phil. Soc. 108 (1990), 261290.CrossRefGoogle Scholar