Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-16T14:08:03.809Z Has data issue: false hasContentIssue false

Crossed complexes and chain complexes with operators

Published online by Cambridge University Press:  24 October 2008

Ronald Brown
Affiliation:
School of Mathematics, University College of North Wales, Bangor, Gwynedd LL57 1UT, Wales
Philip J. Higgins
Affiliation:
Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE

Extract

Chain complexes with a group of operators are a well known tool in algebraic topology, where they arise naturally as the chain complex of cellular chains of the universal cover of a reduced CW-complex X. The group of operators here is the fundamental group of X.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baues, H. J.. Algebraic Homotopy (Cambridge University Press, 1988).Google Scholar
[2]Brown, R.. Coproducts of crossed P-modules: applications to the homology of groups and to second homotopy groups. Topology 23 (1984), 337345.Google Scholar
[3]Brown, R.. Some non-Abelian methods in homotopy theory and homological algebra. In Proceedings International Conference Categorical Topology, Toledo, 1983 (ed. Bentley, H. L. et al. ), (Heldermann-Verlag, Berlin, 1984), pp. 108146.Google Scholar
[4]Brown, R. and Golasinski, M.. A model structure for the homotopy category of crossed complexes. Cahiers Topologie Géom. Différentielle Catégoriques 30 (1989) (to appear).Google Scholar
[5]Brown, R. and Higgins, P. J.. The algebra of cubes. J. Pure Appl. Algebra 21 (1981), 233260.Google Scholar
[6]Brown, R. and Higgins, P. J.. Colimit theorems for relative homotopy groups. J. Pure Appl. Algebra 22 (1981), 1141.Google Scholar
[7]Brown, R. and Higgins, P. J.. Crossed complexes and non-Abelian extensions. In International Conference on Category Theory, Gummersbach (1981), Lecture Notes in Math, vol. 962 (Springer-Verlag), pp. 3950.Google Scholar
[8]Brown, R. and Higgins, P. J.. Homotopies and tensor products for ω-groupoids and crossed complexes. J. Pure Appl. Algebra 47 (1987), 133.Google Scholar
[9]Brown, R. and Loday, J.-L.. Van Kampen Theorems for diagrams of spaces. Topology 26 (1987), 311335.CrossRefGoogle Scholar
[10]Crowell, R. H.. Corresponding group and module sequences. Nagoya Math. J. 19 (1961), 2740.Google Scholar
[11]Crowell, R. H.. The derived module of a homomorphism. Adv. in Math. 6 (1971), 210238.Google Scholar
[12]Ehresmann, Ch.. Catégories topologiques et catégories differentiables. Cahiers Topologie Géom. Différentielle Catégoriques 25 (1983), 237250.Google Scholar
[13]Ellis, G. J.. Homotopy classification the J. H. C. Whitehead way. Exposition. Math. 6 (1988), 97110.Google Scholar
[14]Gilbert, N. D. and Higgins, P. J.. The non-Abelian tensor product of groups and related constructions. Glasgow Math. J. 31 (1989), 1729.CrossRefGoogle Scholar
[15]Golasinski, M.. Homotopy groups of small categories and derived functors. Cahiers Topologie Géom. Différentielle Catégoriques 28 (1987), 8998.Google Scholar
[16]Grothendieck, A.. Catégories cofibrées additif et complexes cotangent relatif. Lecture Notes in Math. vol. 79 (Springer-Verlag, 1968).Google Scholar
[17]Gruenberg, K. W. and Roggenkamp, K. W.. Extension categories of groups and modules II. Stem extensions. J. Algebra 67 (1980), 342368.Google Scholar
[18]Howie, J.. Pullback functors and crossed complexes. Cahiers Topologie Géom. Différentielle Catégoriques 20 (1979), 284296.Google Scholar
[19]Korkes, F. J. and Porter, T.. Continuous derivations, profinite crossed complexes and pseudocompact chain complexes. (U.C.N.W. Pure Math. Preprint No. 87.18.)Google Scholar
[20]Lomonaco, S. J. Jr. The homotopy groups of knots I. How to compute the algebraic 2-type. Pacific J. Math. 95 (1981), 343390.CrossRefGoogle Scholar
[21]Lue, A. S.-T.. Cohomology of groups relative to a variety. J. Algebra 69 (1981), 155174.CrossRefGoogle Scholar
[22]Mackenzie, K.. Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Notes Ser. no. 124 (Cambridge University Press, 1987).Google Scholar
[23]Maclane, S.. Homology (Springer-Verlag, 1963).Google Scholar
[24]Maclane, S.. Categories for the Working Mathematician. Graduate Texts in Math. no. 5 (Springer-Verlag, 1971).Google Scholar
[25]McPherson, J. M.. On the nullity and enclosure genus of wild knots. Trans. Amer. Math. Soc. 144 (1969), 545555.Google Scholar
[26]Olum, P.. Mappings of manifolds and the notion of degree. Ann. of Math. 58 (1953), 458480.CrossRefGoogle Scholar
[27]Plotnick, S. P. and Suciu, A. L.. k-invariants of knotted 2-spheres. Comment. Math. Helv. 60 (1985), 5484.Google Scholar
[28]Porter, T.. Some categorical results in the theory of crossed modules in commutative algebras. J. Algebra 109 (1987), 415420.Google Scholar
[29]Schellenberg, B.. The group of self-equivalences of some compact CW-complexes. Math. Ann. 200 (1973), 253266.Google Scholar
[30]Taylor, J.. Group actions on ω-groupoids and crossed complexes, and the homotopy groups of orbit spaces. Ph.D. thesis, University of Durham (1982).Google Scholar
[31]Whitehead, J. H. C.. Combinatorial homotopy II. Bull. Amer. Math. Soc. 55 (1949), 453496.Google Scholar