Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:01:04.603Z Has data issue: false hasContentIssue false

Badly approximable numbers and Littlewood-type problems

Published online by Cambridge University Press:  12 January 2011

YANN BUGEAUD
Affiliation:
Université de Strasbourg, Mathématiques, 7, rue René Descartes, 67084 Strasbourg, Cedex, France. e-mail: bugeaud@math.unistra.fr
NIKOLAY MOSHCHEVITIN
Affiliation:
Moscow State University, Number Theory, Leninskie Gory 1, Moscow, Russian Federation. e-mail: moshchevitin@rambler.ru

Abstract

We establish that the set of pairs (α, β) of real numbers such that where ‖ · ‖ denotes the distance to the nearest integer, has full Hausdorff dimension in R2. Our proof rests on a method introduced by Peres and Schlag, that we further apply to various Littlewood-type problems.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adamczewski, B. and Bugeaud, Y.On the Littlewood conjecture in simultaneous Diophantine approximation. J. London Math. Soc. 73 (2006), 355366.CrossRefGoogle Scholar
[2]Alessandri, P. and Berthé, V.Three distance theorems and combinatorics on words. Enseigne. Math. 44 (1998), 103132.Google Scholar
[3]Beresnevich, V. V. and Velani, S. L.A note on simultaneous Diophantine approximation on planar curves. Math. Ann. 337 (2007), 769796.CrossRefGoogle Scholar
[4]Bernik, V., Kleinbock, D. and Margulis, G. A. Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. Internat. Math. Res. Notices (2001), 453–486.CrossRefGoogle Scholar
[5]Bugeaud, Y.Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics 160 (Cambridge, 2004).CrossRefGoogle Scholar
[6]Bugeaud, Y., Drmota, M. and de Mathan, B.On a mixed Littlewood conjecture in Diophantine approximation. Acta Arith. 128 (2007), 107124.CrossRefGoogle Scholar
[7]Bugeaud, Y., Haynes, A. and Velani, S. Metric considerations concerning the mixed Littlewood conjecture. Int. J. Number Theory, to appear.Google Scholar
[8]Cassels, J. W. S. and Swinnerton–Dyer, H. P. F.On the product of three homogeneous linear forms and indefinite ternary quadratic forms. Philos. Trans. Roy. Soc. London Ser. A, 248 (1955), 7396.Google Scholar
[9]Einsiedler, M., Katok, A. and Lindenstrauss, E.Invariant measures and the set of exceptions to the Littlewood conjecture. Ann. of Math. 164 (2006), 513560.CrossRefGoogle Scholar
[10]Einsiedler, M. and Kleinbock, D.Measure rigidity and p-adic Littlewood-type problems. Compositio Math. 143 (2007), 689702.CrossRefGoogle Scholar
[11]Falconer, K.Fractal geometry. Mathematical Foundations and Applications (John Wiley & Sons, Ltd., 1990).Google Scholar
[12]Gallagher, P.Metric simultaneous Diophantine aproximations. J. London Math. Soc. 37 (1962), 387390.CrossRefGoogle Scholar
[13]Jarník, V.Zur metrischen Theorie der diophantischen Approximationen. Práce Mat.-Fiz. 36 (1928/29), 91106.Google Scholar
[14]Kuipers, L. and Niederreiter, H.Uniform Distribution of Sequences. Pure and Applied Mathematics (Wiley-Interscience [John Wiley & Sons], 1974).Google Scholar
[15]Littlewood, J. E.Some Problems in Real and Complex Analysis (D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968).Google Scholar
[16]de Mathan, B.Conjecture de Littlewood et récurrences linéaires. J. Théor. Nombres Bordeaux 13 (2003), 249266.CrossRefGoogle Scholar
[17]de Mathan, B. et Teulié, O.Problèmes diophantiens simultanés. Monatsh. Math. 143 (2004), 229245.CrossRefGoogle Scholar
[18]Moshchevitin, N. G. A version of the proof for Peres-Schlag's theorem on lacunary sequences. Available at arXiv: 0708.2087v2 [math.NT] 15 Aug 2007.Google Scholar
[19]Moshchevitin, N. G. Density modulo 1 of sublacunary sequences: application of Peres-Schlag's arguments. Preprint, available at arXiv: 0709.3419v2 [math.NT] 20 Oct 2007.Google Scholar
[20]Moshchevitin, N. G.On small fractional parts of polynomials. J. Number Theory 129 (2009), 349357.CrossRefGoogle Scholar
[21]Moshchevitin, N. G.On simultaneously badly approximable numbers. Bull. Lond. Math. Soc. 42 (2010), 149154.CrossRefGoogle Scholar
[22]Moshchevitin, N. G. Badly approximable numbers related to the Littlewood conjecture. Preprint, available at arXiv: 0810.0777.Google Scholar
[23]Peck, L. G.Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc. 67 (1961), 197201.CrossRefGoogle Scholar
[24]Peres, Yu. and Schlag, W.Two Erdős problems on lacunary sequences: chromatic numbers and Diophantine approximations. Bull. Lond. Math. Soc. 42 (2010), 295300.CrossRefGoogle Scholar
[25]Pollington, A. D. and Velani, S.On a problem in simultaneous Diophantine approximation: Littlewood's conjecture. Acta Math. 185 (2000), 287306.CrossRefGoogle Scholar