Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.248 Render date: 2021-12-08T08:23:01.711Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Cup-length estimates for leaf-wise intersections

Published online by Cambridge University Press:  21 July 2010

PETER ALBERS
Affiliation:
Department of Mathematics, Purdue University. e-mail: palbers@math.purdue.edu
AL MOMIN
Affiliation:
Department of Mathematics, Purdue University. e-mail: amomin@math.purdue.edu

Abstract

We prove that on a restricted contact type hypersurface the number of leaf-wise intersections is bounded from below by a certain cup-length.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AF08]Albers, P. and Frauenfelder, U. Infinitely many leaf-wise intersections on cotangent bundles. (2008), arXiv:0812.4426.Google Scholar
[AF10a]Albers, P. and Frauenfelder, U.Leaf-wise intersections and Rabinowitz Floer homology. J. Topol. Anal. 2 (2010), no. 1, 7798.CrossRefGoogle Scholar
[AF10b]Albers, P. and Frauenfelder, U. On a Theorem by Ekeland-Hofer, arXiv:1001.3386, to appear in Israel J. Math. (2010).Google Scholar
[AF10c]Albers, P. and Frauenfelder, U. Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbations. (2010), arXiv:1001.2920.Google Scholar
[AM09]Albers, P. and McLean, M. Non-displaceable contact embeddings and infinitely many leaf-wise intersections, arXiv:0904.3564, to appear in Journal of Symplectic Geometry (2009).Google Scholar
[Ban80]Banyaga, A.On fixed points of symplectic maps. Invent. Math. 56 (1980), no. 3, 215229.CrossRefGoogle Scholar
[CF09]Cieliebak, K. and Frauenfelder, U.A Floer homology for exact contact embeddings. Pacific J. Math. 293 (2009), no. 2, 251316.CrossRefGoogle Scholar
[Dra08]Dragnev, D. L.Symplectic rigidity, symplectic fixed points, and global perturbations of Hamiltonian systems. Comm. Pure Appl. Math. 61 (2008), no. 3, 346370.CrossRefGoogle Scholar
[EH89]Ekeland, I. and Hofer, H.Two symplectic fixed-point theorems with applications to Hamiltonian dynamics. J. Math. Pures Appl. (9) 68 (1989), no. 4, 467489 (1990).Google Scholar
[Flo89]Floer, A.Cuplength estimates on Lagrangian intersections. Comm. Pure Appl. Math. 42 (1989), no. 4, 335356.CrossRefGoogle Scholar
[Gin07]Ginzburg, V. L.Coisotropic intersections. Duke Math. J. 140 (2007), no. 1, 111163.CrossRefGoogle Scholar
[Gür09]Gürel, B. Leafwise Coisotropic Intersections. Int. Math. Res. Not. (2009), article ID rnp 164.Google Scholar
[Hof88]Hofer, H.Lusternik-Schnirelman-theory for Lagrangian intersections. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 465499.CrossRefGoogle Scholar
[Hof90]Hofer, H.On the topological properties of symplectic maps. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1–2, 2538.CrossRefGoogle Scholar
[Kan09]Kang, J. Existence of leafwise intersection points in the unrestricted case. (2009), arXiv:0910.2369.Google Scholar
[Liu05]Liu, C.-G.Cup-length estimate for Lagrangian intersections. J. Differential Equations 209 (2005), no. 1, 5776.CrossRefGoogle Scholar
[Mer10]Merry, W. On the Rabinowitz Floer homology of twisted cotangent bundles. (2010), arXiv:1002.0162.Google Scholar
[Mos78]Moser, J.A fixed point theorem in symplectic geometry. Acta Math. 141 (1978), no. 1–2, 1734.CrossRefGoogle Scholar
[MS98]McDuff, D. and Salamon, D. A.Introduction to Symplectic Topology, second ed., Oxford Mathematical Monographs. (The Clarendon Press, Oxford University Press, 1998).Google Scholar
[Sch93]Schwarz, M.Morse homology. Progr. Math. 111 (1993).Google Scholar
[Sch98]Schwarz, M.A quantum cup-length estimate for symplectic fixed points. Invent. Math. 133 (1998), no. 2, 353397.CrossRefGoogle Scholar
[Zil08]Ziltener, F. Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings. arXiv:0811.3715, to appear in Journal of Symplectic Geometry (2008).Google Scholar
10
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cup-length estimates for leaf-wise intersections
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Cup-length estimates for leaf-wise intersections
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Cup-length estimates for leaf-wise intersections
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *