Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T03:45:56.283Z Has data issue: false hasContentIssue false

Computer Simulation of Protein-Protein Association in Photosynthesis

Published online by Cambridge University Press:  15 June 2011

I.B. Kovalenko*
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
A.M. Abaturova
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
A.N. Diakonova
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
O.S. Knyazeva
Affiliation:
Physical faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
D.M. Ustinin
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
S.S. Khruschev
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
G.Yu. Riznichenko
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
A.B. Rubin
Affiliation:
Biological faculty, Lomonosov Moscow State University, Leninskye Gory, Moscow 119992, Russia
*
Corresponding author. E-mail: ikovalenko78@gmail.com
Get access

Abstract

The paper is devoted to the method of computer simulation of protein interactions taking part in photosynthetic electron transport reactions. Using this method we have studied kinetic characteristics of protein-protein complex formation for four pairs of proteins involved in photosynthesis at a variety of ionic strength values. Computer simulations describe non-monotonic dependences of complex formation rates on the ionic strength as the result of long-range electrostatic interactions. Calculations confirm that the decrease in the association second order rate constant at low values of the ionic strength is caused by the protein pairs spending more time in “wrong” orientations which do not satisfy the docking conditions and so do not form the final complex capable of the electron transfer.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V.A. Bloomfield. Survey of biomolecular hydrodynamics. On-Line Biophysics Textbook: Separations and Hydrodynamics, 2000.
Connolly, M.L.. Analytical molecular surface calculation. J. Appl. Crystallogr., 16 (1983), 548558. CrossRefGoogle Scholar
R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones. Data for biochemical research. Oxford Science Publications, OUP, Oxford, 1986.
M. Doi, S.F. Edwards. The theory of polymer dynamics. Oxford University Press, New York, 1986.
Durell, S.R., Labanowski, J.K., Gross, E.L.. Modeling of the electrostatic potential field of plastocyanin. Arch. Biochem. Biophys., 277 (1990), 241254. CrossRefGoogle ScholarPubMed
A.V. Finkelstein, O.B. Ptitsyn. Protein physics. A course of lectures. Academic Press, Amsterdam/Boston/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo, 2002.
Fogolari, F., Brigo, A., Molinari, H.. The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. J. Mol. Recognit., 15 (2002), 377392. CrossRefGoogle ScholarPubMed
M., Hervas, M., De la Rosa, Tollin, G.. A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem I particles from spinach. Eur. J. Biochem., 203 (1992), 115120. Google Scholar
M. Hippler, F. Drepper. Electron Transfer Between Photosystem I and Plastocyanin or Cytochrome c6, in Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. J. (Ed. H. Golbeck). Springer, 2006, 499–513.
Hope, A.B.. Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim. Biophys. Acta, 1456 (2000), 526. CrossRefGoogle ScholarPubMed
Hurley, J.K., Hazzard, J.T., Martinez-Julvez, M., Medina, M., Gomez-Moreno, C., Tollin, G.. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Protein Sci., 8 (1999), 16141622. CrossRefGoogle ScholarPubMed
J. Janin. Kinetics and thermodynamics of protein-protein interactions. Protein-protein recognition. (Ed. C. Kleanthous). Oxford University Press, Oxford, 2000, 1–32.
O.S., Knyazeva, I.B., Kovalenko, A.M., Abaturova, G.Y., Riznichenko, E.A., Grachev, A.B., Rubin. Multiparticle computer simulation of plastocyanin diffusion and interaction with cytochrome f in the electrostatic field of the thylakoid membrane. Biophysics, 55 (2010), No. 2, 221227. Google Scholar
Kovalenko, I.B., Abaturova, A.M., Gromov, P.A., Ustinin, D.M., Grachev, E.A., Riznichenko, G.Y., Rubin, A.B.. Direct simulation of plastocyanin and cytochrome f interactions in solution. Phys. Biol., 3 (2006), 121129. CrossRefGoogle ScholarPubMed
I.B., Kovalenko, A.M., Abaturova, P.A., Gromov, D.M., Ustinin, G.Y., Riznichenko, E.A., Grachev, A.B., Rubin. Computer simulation of plastocyanin-cytochrome f complex formation in the thylakoid lumen. Biophysics, 53 (2008), No. 2, 140146. Google Scholar
Kovalenko, I.B., Abaturova, A.M., Riznichenko, G.Y., Rubin, A.B.. A novel approach to computer simulation of protein-protein complex formation. Dokl. Biochem. Biophys., 427 (2009), 215217. CrossRefGoogle ScholarPubMed
Kovalenko, I.B., Abaturova, A.M., Riznichenko, G.Y., Rubin, A.B.. Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin. BioSystems, 103 (2010), 180187. CrossRefGoogle ScholarPubMed
I.B., Kovalenko, A.N., Diakonova, A.M., Abaturova, G.Y., Riznichenko, A.B., Rubin. Direct computer simulation of ferredoxin and FNR complex formation in solution. Phys. Biol., 7 (2010), No. 2, 026001. Google Scholar
Long, H., Chang, C.H., King, P.W., Ghirardi, M.L., Kim, K.. Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Biophys. J., 95 (2008), 3753-3766. CrossRefGoogle ScholarPubMed
F.S. Mathews, A.G. Mauk, G.R. Moore. Protein-protein complexes formed by electron transfer proteins, in Protein-Protein recognition. (Ed. C. Kleanthous). Oxford University Press, Oxford, 2000, 60–101.
M., Medina, M., Hervas, J.A., Navarro, M.A., De la Rosa, C., Gomez-Moreno, G., Tollin. A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS, 313 (1992), No. 3, 239242. Google Scholar
F., Panneton, P., L’Ecuyer. On the xorshift random number generators. ACM T. Model. Comput. Sci., 15 (2005), No. 4, 346361. Google Scholar
Pearson, D.C., Gross, E.L.. Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys. J., 75 (1998), 26982711. CrossRefGoogle ScholarPubMed
Rienzo, F., Gabdoulline, R., Menziani, M., Benedetti, P., Wade, R.. Electrostatic analysis and brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys. J., 81 (2001), 30903104. CrossRefGoogle ScholarPubMed
G.Y., Riznichenko, N.E., Belyaeva, I.B., Kovalenko, A.B., Rubin. Mathematical and computer modeling of primary photosynthetic processes. Biophys. J., 54 (2009), No. 1, 1022. Google Scholar
G.Y., Riznichenko, I.B., Kovalenko, A.M., Abaturova, A.N., Diakonova, D.M., Ustinin, E.A., Grachev, A.B., Rubin. New direct dynamic models of protein interactions coupled to photosynthetic electron transport reactions. Biophys. Rev., 2 (2010), No. 3, 101110. Google Scholar
A. Rubin, G. Riznichenko. Modeling of the primary processes in a photosynthetic membrane. Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems. (Eds. A. Laisk, L. Nedbal, and Govindjee). Springer, Dordrecht, 2009, 151–176.
P. Setif. Electron transfer from the bound Iron-Sulfur clusters to Ferredoxin/Flavodoxin: Kinetic and structural properties of Ferredoxin/Flavodoxin reduction by photosystem I. In: Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. (Ed. J.H. Golbeck). Springer, 2006, 439–454.
Sigfridsson, K.. Ionic strength and pH dependence of the reaction between plastocyanin and photosystem 1. Evidence of a rate-limiting conformational change. Photosynth. Res., 54 (1997), 143153. CrossRefGoogle Scholar
Ubbink, M., Ejdebeck, M., Karlsson, B.G., Bendall, D.S.. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure, 6 (1998), 323335. CrossRefGoogle ScholarPubMed
G.M., Ullmann, E.-W., Knapp. Electrostatic models for computing protonation and redox equilibria in proteins. Eur. Biophys. J., 28 (1999), No. 7, 533551. Google Scholar
Ullmann, G.M., Knapp, E.-W., Kostic, N.M.. Computational simulation and analysis of dynamic association between plastocyanin and cytochrome f. Consequences for the electron-transfer reaction. J. Amer. Chem. Soc., 119 (1997), 4252. CrossRefGoogle Scholar