Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T01:54:07.630Z Has data issue: false hasContentIssue false

Suppression of stimulated Brillouin scattering in laser beam hot spots

Published online by Cambridge University Press:  06 October 2009

R.P. Sharma*
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
Prerana Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
Shivani Rajput
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
A.K. Bhardwaj
Affiliation:
N.S.C.B. Government Post Graduate College, Biaora, India
*
Address correspondence and reprint requests to: R.P. Sharma, Centre for Energy Studies, Indian Institute of Technology, New Delhi 110 016, India. E-mail: rpsharma@ces.iitd.ernet.in

Abstract

In this article, filamentation of a high power laser beam in hot collisionless plasma is investigated considering the ponderomotive nonlinearity. We have studied the effect of self focusing (filamentation) of the laser beam on the localization of ion acoustic wave (IAW) and on stimulated Brillouin scattering (SBS) process. The nonlinear coupling between the laser beam and IAW results in the modification of the Eigen frequency of IAW; consequently, enhanced Landau damping of IAW and a modified mismatch factor in SBS process occur. Due to enhanced Landau damping, there is a reduction in the intensity of IAW wave, and the SBS process gets suppressed. For the typical laser plasma parameters: the laser power flux = 1016 W/cm2, laser beam radius (r0) = 12 µm, n/ncr = 0.11, and (Te/Ti) = 10, the SBS reflectivity is found to be suppressed approximately by 10%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Baldis, H.A., Labaune, C., Moody, J.D., Jalinaud, T. & Tikhonchuk, V.T. (1998). Localization of stimulated Brillouin scattering in random phase plate speckles. Phys. Rev. Lett. 80, 19001903.CrossRefGoogle Scholar
Baldis, H.A., Villeneuve, D.M., Fontaine, B.La., Enright, G.D., Labaune, C., Baton, S., Mounaix, Ph., Pesme, D., Casanova, M. & Rozmus, W. (1993). Stimulated Brillouin scattering in picoseconds time scale: Experiments and modeling. Phys. Fluids B 5, 33193327.CrossRefGoogle Scholar
Baton, S.D., Amiranoff, F., Malka, V., Modena, A., Salvati, M. & Coulaud, C. (1998). Measurement of the stimulated Brillouin scattering from a spatially smoothed laser beam in a homogeneous large scale plasma. Phys. Rev. E 57, R4895R4898.CrossRefGoogle Scholar
Baton, S.D., Rousseaux, C., Mounaix, Ph., Labaune, C., Fontaine, B.La., Pesme, D., Renard, N., Gary, S., Jacquet, M.L. & Baldis, H.A. (1994). Stimulated Brillouin scattering with a 1 ps laser pulse in a performed underdense plasma. Phys. Rev. E 49, 36023605.Google Scholar
Bers, A., Shkarofsky, I.P. & Shoucri, M. (2009). Relativistic Landau damping of electron plasma waves in stimulated Raman scattering. Phys. Plasma 16, 022104.CrossRefGoogle Scholar
Borghesi, M., KAr, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Futchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high intensity laser matter interactions. Laser Part. Beams 25, 161167.Google Scholar
Bruckner, K.A. & Jorna, S. (1974). Laser driven fusion. Rev. Modern Phys. 46, 325367.CrossRefGoogle Scholar
Chirokikh, A., Seka, W., Simon, A., Craxton, R.S. & Tikhonchuk, V.T. (1998). Stimulated Brillouin scattering in long-scale-length laser plasmas. Phys. Plasmas 5, 11041109.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebrave, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium–tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.Google Scholar
Dombi, P., Racz, P. & Bodi, B. (2009). Surface plasmon enhanced electron acceleration with few cycle laser pulses. Laser Part. Beams 27, 291296.CrossRefGoogle Scholar
Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778785.CrossRefGoogle Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., Mckenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Eliseev, V.V., Rozmus, W., Tikhonchuk, V.T. & Capjack, C.E. (1996). Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot. Phys. Plasmas 3, 37543760.CrossRefGoogle Scholar
Estrabrook, E., Kruer, W.L. & Lasinski, B.F. (1980). Heating by Raman backscatter and forward scatter. Phys. Rev. Lett. 45, 13991403.CrossRefGoogle Scholar
Fernandez, J.C., Cobble, J.A., Failor, B.H., Dubois, D.F., Montgomery, D.S., Rose, H.A., Vu, H.X., Wilde, B.H., Wilde, M.D. & Chrien, R.E. (1996). Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas. Phys. Rev. Lett. 77, 27022705.CrossRefGoogle ScholarPubMed
Fuchs, J., Labuane, C., Depierreux, D., Baldis, H.A., Michard, A. & James, G. (2001). Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432435.Google Scholar
Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A. & Willi, O. (1999). Stimulated Brillouin scattering from underdense expending plasma in a regime of strong filamentation. Phys. Rev. E 59, 10381046.CrossRefGoogle Scholar
Hasi, W.L.J., Gong, S., Lu, Z.W., Lin, D.Y., He, W.M. & Fan, R.Q. (2008). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 26, 511516.CrossRefGoogle Scholar
Hüller, S. (1991). Stimulated Brillouin scattering off non-linear ion acoustic waves. Physics of Fluids B 3, 33173330.CrossRefGoogle Scholar
Huller, S., Masson-Laborde, P.E., Pesme, D., Labaune, C. & Bandulet, H. (2008). Modeling of stimulated Brillouin scattering in expanding plasma. Journal of Phys. 112, 022031.Google Scholar
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS- parameters and loss modulation on the mode locking of an SBS- laser oscillator. Laser Part. Beams 25, 107116.CrossRefGoogle Scholar
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.Google Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principle of Plasma Physics. Tokyo, Japan: McGraw Hill-Kogakusha.Google Scholar
Kruer, W.L. (2000). Interaction of plasmas with intense laser. Phys. Plasma 7, 22702278.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., GAmmino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distribution of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.Google Scholar
Myatt, J., Pesme, D., Huller, S., Maximov, A.V., Rozmus, W. & Capjack, C.E. (2001). Nonlinear propagation of a randomized laser beam through an expanding plasma. Phys. Rev. Lett. 87, 255003.Google Scholar
Ozoki, T., Bom Elouga, L.B., Ganeev, R., Kieffer, J.C., Sazuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Rozmus, W., Sharma, R.P., Samson, J.C. & Tighe, W. (1987). Nonlinear evolution of stimulated Raman scattering in homogeneous plasmas. Phys Fluids 30, 21812193.CrossRefGoogle Scholar
Soadha, M.S., Mishra, S.K. & Mishra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Optics E 3, 169265.CrossRefGoogle Scholar
Wang, Y.L., Lu, Z.W., He, W.M., Zheng, Z.X. & Zhao, Y.H. (2009). A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies. Laser Part. Beams 27, 297302.Google Scholar
Young, P.E., Baldis, H.A., Drake, R.P., Campbell, E.M. & Estrabrook, K.G. (1988). Direct evidence of ponderomotive Filamentation in laser-produced plasma. Phys. Rev. Lett. 61, 23362339.Google Scholar