Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T12:42:01.415Z Has data issue: false hasContentIssue false

Spectroscopic analysis of short-pulse laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

J.P. Matte
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, Varennes, Québec, Canada, J3X-1S2
J.C. Kieffer
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, Varennes, Québec, Canada, J3X-1S2
M. Chaker
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, Varennes, Québec, Canada, J3X-1S2
C.Y. Côté
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, Varennes, Québec, Canada, J3X-1S2
Y. Beaudoin
Affiliation:
INRS-Energie, 1650 Montée Ste-Julie, Varennes, Québec, Canada, J3X-1S2
C.Y. Chien
Affiliation:
CUOS, University of Michigan, Ann Arbor, Michigan, USA
S. Coe
Affiliation:
CUOS, University of Michigan, Ann Arbor, Michigan, USA
G. Mourou
Affiliation:
CUOS, University of Michigan, Ann Arbor, Michigan, USA
M. Busquet
Affiliation:
CEA Limeil, F-94195 Villeneuve St-Georges Cedex, France
D. Gilles
Affiliation:
CEA Limeil, F-94195 Villeneuve St-Georges Cedex, France
O. Peyrusse
Affiliation:
CEA Limeil, F-94195 Villeneuve St-Georges Cedex, France

Abstract

Experimental spectra of hot dense plasmas of aluminium produced by the interaction of a subpicosecond laser with solid targets at 1016 and 5 × 1017 W/cm2 are analyzed and discussed. A detailed analysis of the K-shell spectra is given through time-dependent calculations of atomic physics postprocessed to Fokker-Planck calculations of the laser-matter interaction. The non-Maxwellian character of the electron distribution function is shown. An evaluation of the electronic density and of the ion temperature 7i will be presented through Stark line broadening calculations. An X-ray spectrum from a Tantalum target also will be presented along with a preliminary interpretation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldis, H. et al. 1993 Phys. Fluids B 5, 3319.CrossRefGoogle Scholar
Bauche-Arnoult, C. et al. 1989 Phys. Rev. A 39, 1054.CrossRefGoogle Scholar
Beaudoin, Y. et al. 1992 Opt. Lett. 17, 865.CrossRefGoogle Scholar
Bruneau, J. & Busquet, M. 1986 J. Phys. (Paris) Coll. C6 47, 333.Google Scholar
Cazalis, B. et al. 1991 Laser Particle Beams 9, 403.Google Scholar
Gilles, D. 1990 Ann. Phys. (Paris) Colloq. 3 15, 85.Google Scholar
Gilles, D. & Angelie, A. 1986 Ann. Phys. (Paris) Colloq. 3 11, 157.Google Scholar
Kieffer, J.C. et al. 1989 Phys. Rev. Lett. 62, 760.CrossRefGoogle Scholar
Kieffer, J.C. et al. 1992 Bull. Am. Phys. Soc. 37, 1468.Google Scholar
Kieffer, J.C. 1993 Phys. Fluids B 5, 2676.CrossRefGoogle Scholar
Labaune, C. et al. 1991 In Proceedings of the SPIE International Society of Optical Engineers, Vol. 1413, p. 138.Google Scholar
Landen, O.L. et al. 1989 Phys. Rev. Lett. 63, 1475.CrossRefGoogle Scholar
Liu, X. & Umstadter, D. 1992 Phys. Rev. Lett. 69, 1935.CrossRefGoogle Scholar
Maine, P. et al. 1988 IEEE J. Quant. Elec. 24, 398.CrossRefGoogle Scholar
Matte, J.P. et al. 1984 Phys. Rev. Lett. 54, 1461.CrossRefGoogle Scholar
Mens, A. et al. 1993 ECLIM'93 Paris Conference, paper P-24/2.Google Scholar
Milchberg, H.M. et al. 1988 Phys. Rev. Lett. 61, 2364.CrossRefGoogle Scholar
Murname, M.M. et al. 1989 Phys. Rev. Lett. 62, 155.CrossRefGoogle Scholar
Peyrusse, O. 1992 Phys. Fluids B 4, 2007.CrossRefGoogle Scholar
Peyrusse, O. & Gilles, D. 1993 Laser Particle Beams (submitted).Google Scholar
Rouyer, C. et al. 1993 Opt. Lett. 18, 214.CrossRefGoogle Scholar
Sauteret, C. et al. 1991 Opt. Lett. 16, 238.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. 1985 Opt. Comm. 56, 219.CrossRefGoogle Scholar