Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T23:09:17.341Z Has data issue: false hasContentIssue false

Spectral diagnostic of a resonantly laser created plasma

Published online by Cambridge University Press:  09 March 2009

J. P. Bardet
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France
J. L. Bobin
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France
C. Dimarcq
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France
L. Giry
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France
J. B. Larour
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France
J. C. Valognes
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France
M. A. Zaibi
Affiliation:
Laboratoire de Physique et Optique Corpusculaires, Université Pierre et Marie Curie, T. 12, E.5, 4 place Jussieu, 75252 Paris CEDEX 05, France

Abstract

Plasma creation occurs when the frequency of a tunable dye laser is adjusted to the 589 nm D-doublet of the sodium atom. Occurrence and Stark broadening of emission lines in the fluorescence light are used as diagnostics. The time history of the electron density and temperature is inferred from these measurements. The peak electron density was found to be above 5 · 1016 cm−3 with a temperature lower than 1 eV.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegrini, M. et al. 1985 Phys. Rev. A32, 2068.CrossRefGoogle Scholar
Bahns, J. T. & Stwalley, W. C. 1984 Appl. Phys. Lett., 44, 826.CrossRefGoogle Scholar
Bardet, J. P. & Valognes, J. C. 1986 J. de Physique 47, 1203.CrossRefGoogle Scholar
Barnard, A. J., Cooper, J. & Smith, E. W. 1974 J. Quant. Spectroscop. Radiat. Transfer 14, 1025.CrossRefGoogle Scholar
Bartels, H. 1953 Z. Physik 136, 411.CrossRefGoogle Scholar
Bobin, J. L. & Zaibi, M. A. 1985 J. Physique Lett. 46, L-744.CrossRefGoogle Scholar
Carré, B. et al. 1984 Optics Comm. 52, 29.CrossRefGoogle Scholar
Drewell, N. 1979, Ph.D. Thesis U. of Toronto.Google Scholar
Griem, H. R. 1974 Spectral Line Broadening by Plasmas (Academic, New York).Google Scholar
Hora, H., Stwalley, W. C., Kleiber, P. D., Bahns, J. T. & Sheerin, J. P. 1986 in Laser Interaction and Related Plasma Phenomena, Vol. 7, eds. Hora, H. & Miley, G. (Plenum, New York).CrossRefGoogle Scholar
Huber, M. C. E. & Jahreiss, L. 1984 J. de Physique C1, 215.Google Scholar
Koch, M. E., Verma, K. K., Bahns, J. T. & Stwalley, W. C. 1983 in International Conference on Lasers '82, ed. Powell(S. T. S. McLean,Virginia).Google Scholar
Landen, O. L. et al. 1985 Phys. Rev. A32, 2963.CrossRefGoogle Scholar
Lucatorto, T. B. & McIlrath, T. J. 1976 Phys. Rev. Lett. 37, 428.CrossRefGoogle Scholar
Magnus, W. 1954 Comm. Pure Appl. Math 7, 649.CrossRefGoogle Scholar
Measures, R. M., Drewell, N. & Cardinal, P. 1979 J. Appl. Phys. 50, 2662.CrossRefGoogle Scholar
Raizer, Yu. P. 1977 Laser Induced Discharge Phenomena (Plenum, New York).Google Scholar
Zaibi, M. A. 1984, Thèse, Université Paris-Sud.Google Scholar