Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-11T16:31:06.831Z Has data issue: false hasContentIssue false

Production of high-intensity proton fluxes by a 2ω Nd:glass laser beam

Published online by Cambridge University Press:  01 December 2010

J. Badziak*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
S. Jabłoński
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
A. Szydłowski
Affiliation:
The Andrzej Soltan Institute for Nuclear Studies, Świerk, Poland
J. Fuchs
Affiliation:
LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France
A. Mancic
Affiliation:
LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France
*
Address correspondence and reprint requests to: J. Badziak, Institute of Plasma Physics and Laser Microfusion, EURATOM Association, 23 Hery Street, 01-497 Warsaw, Poland. E-mail: badziak@ifpilm.waw.pl

Abstract

The results of numerical and experimental studies of high-intensity proton beam generation using a 2ω or 1ω Nd:glass laser beam irradiating a thin hydrogen-rich target are reported. The effect of the laser wavelength (λ), intensity (IL) and pulse duration as well as the target thickness, and the preplasma density gradient scale length on proton beam parameters, and the laser-protons energy conversion efficiency were examined by particle-in-cell simulations. Both the simulations and measurements, performed on the LULI 100 TW laser facility at IL up to 2 × 1019W/cm2, prove that at the ILλ2 product fixed, the 2ω laser driver can produce proton beams of intensity, current density and energy fluence significantly higher than the ones which could be achieved using the 1ω driver. In particular, at ILλ2~(0.5–1) × 1020 Wcm−2 µm2 the 2ω picosecond driver makes it possible to generate multi-MeV proton beams of intensity and current density in excess of 1021W/cm2 and 1014A/cm2, respectively, with the conversion efficiency above 10%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M., Patel, P.K., Mackinnon, A., Price, D., Wilks, S. & Morse, E. (2004). Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils. Phys. Rev. Lett. 93, 265004/1–4.Google Scholar
Badziak, J., Makowski, J., Parys, P., Ryć, L., Wołowski, J., Woryna, E. & Vankov, A.B. (2001). Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 34, 18851891.Google Scholar
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2004). Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143147.Google Scholar
Badziak, J., Jabłoński, S. & Głowacz, S. (2006). Generation of collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities. Appl. Phys. Lett. 89, 061504/1–3.CrossRefGoogle Scholar
Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev. 15, 1.Google Scholar
Badziak, J., Jabłoński, S. & Wołowski, J. (2007). Progress and prospect of fast ignition of ICF targets. Plasma Phys. Contr. Fusion 49, B651B666.Google Scholar
Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J. & Mancic, A. (2008). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 104 063310/1–6.Google Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412438.Google Scholar
Denevit, J. (1992). Absorption of high-intensity subpicosecond laser on solid density targets. Phys. Rev. Lett. 69, 30523055.Google Scholar
Fernandez, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D. Cort, Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004/1–8.Google Scholar
Foord, M.E., Patel, P.K., Mackinnon, A.J., Hatchett, S.P., Key, M.H., Lasinski, B., Town, R.P.J., Tabak, M. & Wilks, S.C. (2007). MeV proton generation and efficiency from an intense laser irradiated foil. High Energy Dens. Phys. 3, 365370.Google Scholar
Fuchs, J., Sentoku, Y., d'Humières, E., Cowan, T.E., Cobble, J., Audebert, P., Kemp, A., Nikroo, A., Antici, P., Brambrink, E., Blazevic, A., Campbell, E.M., Fernández, J.C., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Pepescu, H., Renard-LeGalloudec, N., Roth, M., Schreiber, J., Stephens, R. & Pépin, H. (2007). Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils. Phys. Plasmas 14, 053105/1–13.Google Scholar
Habara, H., Kodama, R., Sentoku, Y., Izumi, N., Kitagawa, Y., Tanaka, K.A., Mima, K. & Yamanaka, T. (2003). Momentum distribution of accelerated ions in ultra-intense laser-plasma interactions via neutron spectroscopy. Phys. Plasmas 10, 37123716.Google Scholar
Hegelich, B.M., Albright, B., Audebert, P., Blazevic, A., Brambrink, E., Cobble, J., Cowan, T., Fuchs, J., Gauthier, J.C., Gautier, C., Geissel, M., Habs, D., Johnson, R., Karsch, S., Kemp, A., Letzring, S., Roth, M., Schramm, U., Schroeiber, J., Witte, K.J. & Fernandez, J.C. (2005). Spectral properties of laser accelerated mid-Z MeV/u ion beams Phys. Plasmas 12, 056314/1–5.Google Scholar
Holkundkar, A.R. & Gupta, N.K. (2008). Effect of initial plasma density on laser induced ion acceleration. Phys. Plasmas 15, 123104/1–10.Google Scholar
Hora, H., Badziak, J., Boody, F., Hopfel, R., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Parys, P., Perina, P., Pfejfer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Commun. 207, 333338.Google Scholar
Lee, K., Park, S.H., Cha, Y.-H., Lee, J.Y., Lee, Y.W.,Yea, K.-H. & Jeong, Y.U. (2008). Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Rev. E 78, 056403/1–4.Google Scholar
Liseykina, T.V. & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett. 91, 171702/1–3.Google Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Contr. Fusion 50, 124033/1–9.Google Scholar
McKenna, P., Lindau, F., Lundh, O., Carroll, D.C., Clarke, R.J., Ledingham, K.W.D., McCanny, T., Nelly, D., Robinson, A.P.L., Robson, L., Simpson, P.T., Wahistrom, C-G. & Zepf, M. (2007). Low-and medium-mass ion acceleration driven by petawatt laser plasma interactions. Plasma Phys. Contr. Fusion 49, B223B231.Google Scholar
Pukhov, A. (2001). Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 35623565.Google Scholar
Robinson, A., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 033034/1–13.Google Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nature Physics 3, 58/1–4.Google Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z.,Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.Google Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyerter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. Spec. Top. AB 5, 061301/1–8.Google Scholar
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, A., Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High + energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B 74, 207215.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 86, 17691772.Google Scholar
Szydłowski, A., Badziak, J., Fuchs, J., Kubkowska, M., Parys, P., Rosiński, M., Suchańska, R., Wołowski, J., Antici, P. & Mancic, A. (2009). Application of solid-state nuclear track detectors of the CR-39/PM-355 type for measurements of energetic protons emitted from plasma produced by an ultra-intense laser. Radiat. Meas. 44, 881884.Google Scholar
Temporal, M., Honrubia, J.J. & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium-tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 30983107.Google Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Xu, M.H., Li, Y.T., Yuanet, X.H., Yu, Q.Z., Wang, S.J., Zhao, W., Wen, X.L., Wang, G.C., Jiao, C.Y., He, Y.L., Zhang, S.G., Wang, X.X.Huang, W.Z.Gu, Y.G. & Zhang, J. (2006). Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions. Phys. Plasmas 13, 104507/1–4.Google Scholar
Yang, X.H., Ma, Y.Y., Shao, F.Q., Xu, H., Yu, M.Y., Gu, Y.Q., Yu, T.P., Yin, Y., Tian, C.L. & Kawata, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated target. Laser Part. Beams 28, 319325.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291297.Google Scholar