Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-04T17:01:13.124Z Has data issue: false hasContentIssue false

The PHEBUS experimental facility operating at 250 ps and 0·53 μm

Published online by Cambridge University Press:  09 March 2009

G. Thiell
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France
A. Adolf
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France
M. Andre
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France
N. Fleurot
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France
D. Friart
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France
D. Juraszek
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France
D. Schirmann
Affiliation:
Commissariat á l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France

Abstract

The experiments reported in this paper demonstrate that the PHEBUS laser facility is now currently being operated with high performances (4 TW with 250 ps pulses at 0·527 μm wavelength).

The output energy of the 2-beam PHEBUS laser system can be focused either in a small focal spot (80% of the incident energy is in a 220 μm diameter focal spot) for high intensity experiments (≥5 × 1015 W cm−2) or in very large spots (a few mm in diameter) at moderate intensities (1013 − 2·5 × 1014 W cm−2), for large scale experiments. It is shown that the spatial intensity distribution in the target plane is primarily due to intensity independent aberrations and to diffraction. Laser light absorption in plane aluminum and gold targets are interpreted in terms of inverse bremsstrahlung absorption that may account for 70 to 90% of absorbed energy. Finally, the plasma expansion is shown to be very planar and comparison with one-dimensional Lagrangian simulations gives flux limiter values of 0·03 and 0·02 respectively for Al and Au targets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolf, A., Chatrefou, D., Euzenne, D. & Morbieu, B. 1984 J. of Appl. Phys. 55, 4116.CrossRefGoogle Scholar
Bourgade, J. L., Bocher, J. L., De Mascureau, J. & Saleres, A. 1985 C.R. Acad. Sc. Paris 301, 895.Google Scholar
Buresi, E., Coutant, J., Dautray, R., Decroisette, M., Duborgel, B., Guillaneux, P., Launspach, J., Nelson, P., Patou, C., Reisse, J. M., & Watteau, J. P. 1986 Laser and Particle Beams 4, 531.CrossRefGoogle Scholar
Busouet, M. 1982 Phys. Rev A 25, 2302.CrossRefGoogle Scholar
Cavailler, C., Genoud, M., Fleurot, N., Launspach, J., Mazataud, D., & Mens, A. 1984 Proceedings of the 16th International Congress on High Speed Photography and Photonics, SPIE Vol. 491, 693.Google Scholar
Garban-Labaune, C., Fabre, E., Max, C., Amiranoff, F., Fabbro, R., Virmont, J. & Mead, W. C. 1985 Phys. Fluids 28, 2580.CrossRefGoogle Scholar
Holzrichter, J. F. Nova Laser Technology, Energy and Technology Review, LLNL, February 1985.Google Scholar
Hunt, J. T., Renard, P. A. & Simmons, W. W. 1979 Appl. Opt. 16, 779.CrossRefGoogle Scholar
Kidder, R. E. 1981 Nucl. Fus. 21, 145.CrossRefGoogle Scholar
Kuizenga, D. J. 1981 IEEE J. of Quantum Electronics QE-17, 9, 1694.CrossRefGoogle Scholar
Langdon, A. B. 1980 Phys. Rev. Lett. 44, 575.CrossRefGoogle Scholar
Martin, W. E., Milam, D. & Trenholme, J. B. 1980, Laser Fusion Program Annual Report 1979, N° UCRL-50021–79, LLNL, 2–160 to 2–170.Google Scholar
Mead, W. C., Campbell, E. M., Estabrook, K. G., Turner, R. E., Kruer, W. L., Lee, P. H. Y., Pruett, B., Rupert, V. C., Tirsell, K. G., Stradling, G. L., Ze, F., Max, C. E., Rosen, M. D. & Lasinski, B. F. 1983 Phys. Fluids 26, 2316.CrossRefGoogle Scholar
Nuckolls, J. H. LLNL Report UCRL-84932, September 1980.Google Scholar
Seka, W., Craxton, R. S., Delettrez, J., Goldmann, L., Keck, R., Mc crory, R. L., Shvarts, D., Soures, J. M. & Boni, R. 1982 Optics Comm. 40, 437.CrossRefGoogle Scholar
Simmons, W. W., Hunt, J. T., Warren, 1981 IEEE J. of Quantum Electronics QE-17, 9, 1727.CrossRefGoogle Scholar
Slater, D. C., Busch, G. E., Charatis, G., Johnson, R. R., Mayer, F. J., Schroeder, R. J., Simpson, J. D., Sullivan, D., Tarvin, J. A. & Thomas, C. E. 1981 Phys. Rev. Lett. 46, 1199.CrossRefGoogle Scholar
Swift, C. D., Bliss, E. S., Jones, W. A. & Seppala, L. G. 1984 SPIE 483, 10.Google Scholar